FRP-Strengthening of Curved Masonry Structures: Local Bond Behavior and Global Response

Article Preview

Abstract:

The aim of the paper is to propose and assess the reliability of a modeling strategy which combines the homogenization of the masonry material and the use of zero-thickness interface elements. This strategy is specifically proposed for numerically investigating the structural response of FRP-reinforced curved masonry structures. Indeed, in order to consider the influence of the geometry curvature of the masonry substrate on the local bond behavior of the FRP-strengthening system, bond-slip laws which specifically account for the geometric curvature of the substrate are introduced at the FRP/substrate interface layer. Numerical analyses concerning masonry arches selected from the current literature are presented in the paper in order to assess the reliability of the proposed modelling approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-141

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] E. Grande, G. Milani, E. Sacco, Modelling and analysis of FRP-strengthened masonry panels, Engineering Structures. 30(7) (2008) 1842-1860.

DOI: 10.1016/j.engstruct.2007.12.007

Google Scholar

[2] E. Grande, M. Imbimbo, E. Sacco, Simple Model for the Bond Behavior of Masonry Elements Strengthened with FRP, Journal of Composites for Construction. 15(3) (2011) 354-363.

DOI: 10.1061/(asce)cc.1943-5614.0000170

Google Scholar

[3] E. Grande, M. Imbimbo, The role of the adhesive on the bond behavior of SRPs applied on masonry supports: Experimental and numerical study, Key Engineering Materials. 624 (2015) 652-659.

DOI: 10.4028/www.scientific.net/kem.624.652

Google Scholar

[4] M. Tortora, S. Sfarra, M. Chiarini, V. Daniele, G. Taglieri, D. Paoletti, G. Cerichelli, Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems of mural paintings, Applied Surface Science. 387 (2016).

DOI: 10.1016/j.apsusc.2016.07.023

Google Scholar

[5] E. Grande, M. Imbimbo, E. Sacco, Investigation on the bond behavior of clay bricks reinforced with SRP and SRG strengthening systems, Materials and Structures. 48(11) (2015) 3755-3770.

DOI: 10.1617/s11527-014-0437-x

Google Scholar

[6] G. de Felice, M.A. Aiello, A. Bellini, F. Ceroni, S. De Santis, E. Garbin, M. Leone, G.P. Lignola, M. Malena, C. Mazzotti, M. Panizza, M.R. Valluzzi, Experimental characterization of composite-to-brick masonry shear bond, Materials and Structures. 49(7) (2016).

DOI: 10.1617/s11527-015-0669-4

Google Scholar

[7] B. Ghiassi, G. Marcari, D. V. Oliveira, P.B. Lourenço, Numerical analysis of bond behavior between masonry bricks and composite materials, Engineering Structures 43 (2012) 210-220.

DOI: 10.1016/j.engstruct.2012.05.022

Google Scholar

[8] E. Grande, M. Imbimbo, A simple 1D-Finite Element approach for the study of the bond behavior of masonry elements strengthened by FRP, Composites Part B. 91 (2016) 548–558.

DOI: 10.1016/j.compositesb.2016.02.005

Google Scholar

[9] I. Basilio, R. Fedele, P.B. Lourenço, G. Milani, Assessment of curved FRP-reinforced masonry prisms: experiments and modeling. Constr Build Mater. 51 (2014), 492–505.

DOI: 10.1016/j.conbuildmat.2013.11.011

Google Scholar

[10] I. Basilio, Strengthening of arched masonry structures with composite materials [Ph.D. thesis]. Portugal: University of Minho, Department of Civil Engineering, (2007).

Google Scholar

[11] E. Bertolesi, G. Milani, R. Fedele. Fast and reliable non-linear heterogeneous FE approach for the analysis of FRP-reinforced masonry arches. Composites Part B: Engineering 80 (2016), 189-200.

DOI: 10.1016/j.compositesb.2015.11.005

Google Scholar

[12] E. Grande, G. Milani, Modeling of FRP-strengthened curved masonry specimens and proposal of a simple design formula, Composite Structures. 158 (2016) 281-290.

DOI: 10.1016/j.compstruct.2016.09.017

Google Scholar

[13] DIANA 9. 1. Displacement analysis finite element software. Version 9. 1. Delft (The Netherlands): TNO-Building Division; (2000).

Google Scholar

[14] E. Bertolesi, G. Milani, P.B. Lourenço. Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry. Computers & Structures 176 (2016), 13-33.

DOI: 10.1016/j.compstruc.2016.08.001

Google Scholar

[15] ABAQUSTM. Finite Element Analysis, v6. 6. Theory Manual. SIMULIA, Inc.: Maastricht, (2006).

Google Scholar