Confinement of Clay Masonry Columns with SRG

Article Preview

Abstract:

In this study, the behavior of clay masonry columns confined by steel reinforced grout (SRG) composite with a natural hydraulic lime mortar is investigated. An experimental study was carried out to understand the behavior of masonry prisms with a square cross-section confined by SRG composite jackets subjected to a monotonic concentric compressive load. Test parameters considered in this study are the density of steel fibers and column corner radius. The effectiveness of the confinement is studied in terms of load-bearing capacity with respect to unconfined columns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

350-357

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] C.G. Papanicolaou, T.C. Triantafillou, K. Karlos, M. Papathanasiou. Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading. Mater Struct 40 (2007) 1081-1097.

DOI: 10.1617/s11527-006-9207-8

Google Scholar

[2] M. Corradi, A. Borri, G. Castori, R. Sisti. Shear strengthening of wall panels through jacketing with cement mortar reinforced by GFRP grids. Compos - Part B: Eng 64 (2014) 33–42.

DOI: 10.1016/j.compositesb.2014.03.022

Google Scholar

[3] M.R. Valluzzi, F. Daporto, E. Garbin, M. Panizza. Out-of-plane behavior of infill masonry panels strengthened with composite materials. Mater Struct 47 (2014) 2131-2145.

DOI: 10.1617/s11527-014-0384-6

Google Scholar

[4] S. Babaeidarabad, F. De Caso, A. Nanni. URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression. J Compos Constr 18: 2 (2013).

DOI: 10.1061/(asce)cc.1943-5614.0000441

Google Scholar

[5] S. Babaeidarabad, F. Caso, A. Nanni. Out-of-plane behavior of URM walls strengthened with fabric-reinforced cementitious matrix composite. J Compos Constr 18: 4 (2013).

DOI: 10.1061/(asce)cc.1943-5614.0000457

Google Scholar

[6] V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano. Extrados strengthening of brick masonry arches with PBO-FRCM composites: experimental and analytical investigations. Compos Struct 149: 1 (2016) 184-196.

DOI: 10.1016/j.compstruct.2016.04.030

Google Scholar

[7] V. Giamundo, G.P. Lignola, G. Maddaloni, A. Balsamo, A. Prota, G. Manfredi. Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Compos - Part B: Eng 70 (2015) 53-63.

DOI: 10.1016/j.compositesb.2014.10.039

Google Scholar

[8] V. Giamundo, G.P. Lignola, G. Maddaloni, F. da Porto, A. Prota, G. Manfredi. Shaking table tests on a full-scale unreinforced and IMG-retrofitted clay brick masonry barrel vault. Bull Earthquake Eng 14: 6 (2016) 1663-1693.

DOI: 10.1007/s10518-016-9886-7

Google Scholar

[9] G. Ramaglia, G.P. Lignola, A. Balsamo, A. Prota, G. Manfredi. Seismic strengthening of masonry vaults with abutments using Textile Reinforced Mortar. J Compos Constr, in press. DOI: 10. 1061/(ASCE)CC. 1943-5614. 000073.

DOI: 10.1061/(asce)cc.1943-5614.0000733

Google Scholar

[10] L. Bednarz, A. Gorski, J. Jasienko, E. Rusinski. Simulations and analyses of arched brick structures. Autom Constr 20: 12 (2011) 741-754.

Google Scholar

[11] Ł. Hojdys, P. Krajewski. Laboratory tests on masonry vaults with backfill strengthened at the extrados. Key Eng Mat 624 (2015) 510-517.

DOI: 10.4028/www.scientific.net/kem.624.510

Google Scholar

[12] Carloni C., Mazzotti C., Savoia, M., and Subramaniam K.V. Confinement of masonry columns with FRCM composites. Key Eng Mat 624 (2015) 644-651.

DOI: 10.4028/www.scientific.net/kem.624.644

Google Scholar

[13] De Santis, S., Casadei, P., De Canio, G., de Felice, G., Malena, M., Mongelli, M., and Roselli, I. Seismic performance of masonry walls retrofitted with steel reinforced grout. Earthquake Engng Struct. Dyn., 45 (2016) 229–251.

DOI: 10.1002/eqe.2625

Google Scholar

[14] A. D'Ambrisi, F. Focacci. Flexural strengthening of RC beams with cement-based composites, J Comp Constr 15: 5 (2011) 707-720.

DOI: 10.1061/(asce)cc.1943-5614.0000218

Google Scholar

[15] Loreto, L. Leardini, D. Arboleda, A. Nanni. Performance of RC slab-type elements strengthened with fabric reinforced cementitious matrix composites. J Compos Constr 18: 3 (2013) 1–9.

DOI: 10.1061/(asce)cc.1943-5614.0000415

Google Scholar

[16] C. Pellegrino, T. D'Antino. Experimental behavior of existing precast prestressed reinforced concrete elements strengthened with cementitious composites. Compos - Part B: Eng. 55 (2013) 31-40.

DOI: 10.1016/j.compositesb.2013.05.053

Google Scholar

[17] L.H. Sneed, S. Verre, C. Carloni, C., L. Ombres. Flexural behavior of RC beams strengthened with steel-FRCM composite. Eng Struct 127 (2016) 686-699.

DOI: 10.1016/j.engstruct.2016.09.006

Google Scholar

[18] M.Y. Alabdulhadya, L.H. Sneed, C. Carloni. Torsional behavior of RC beams strengthened with PBO-FRCM composite – an experimental study. Eng Struc 136 (2017) 393–405.

DOI: 10.1016/j.engstruct.2017.01.044

Google Scholar

[19] A. D'Ambrisi, L. Feo, F. Focacci, Experimental analysis on bond between PBO-FRCM strengthening materials and concrete, Compos - Part B: Eng. 44: 1 (2013) 524–32.

DOI: 10.1016/j.compositesb.2012.03.011

Google Scholar

[20] T. D'Antino, C. Carloni, L.H. Sneed, C. Pellegrino. Matrix-fiber bond behavior in PBO FRCM composites – a fracture mechanics approach. Eng Frac Mech J 117 (2014) 94-111.

DOI: 10.1016/j.engfracmech.2014.01.011

Google Scholar

[21] L.H. Sneed, T. D'Antino, C. Carloni. Investigation of bond behavior of PBO fiber-reinforced cementitious matrix-composite concrete interface. ACI Mat J 111: 5 (2014) 569-580.

DOI: 10.14359/51686604

Google Scholar

[22] T. D'Antino, C. Carloni, L.H. Sneed, C. Pellegrino. Fatigue and post-fatigue behavior of PBO FRCM-concrete joints. Inter J Fatigue 81 (2015) 91-104.

DOI: 10.1016/j.ijfatigue.2015.06.008

Google Scholar

[23] C. Carloni, T. D'Antino, L.H. Sneed, C. Pellegrino. Role of the matrix layers in the stress-transfer mechanism of FRCM composites bonded to a concrete substrate. ASCE J of Eng Mech 141: 6 (2015).

DOI: 10.1061/(asce)em.1943-7889.0000883

Google Scholar

[24] T. D'Antino, L.H. Sneed, C. Carloni, C. Pellegrino. Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints. Constr and Build Mat 101 (2015) 838-850.

DOI: 10.1016/j.conbuildmat.2015.10.045

Google Scholar

[25] L.H. Sneed, T. D'Antino, C. Carloni, C. Pellegrino. A comparison of the bond behavior of PBO-FRCM composites determined by single-lap and double-lap shear tests. Cem and Conc Compos 64 (2015) 37-48.

DOI: 10.1016/j.cemconcomp.2015.07.007

Google Scholar

[26] T. D'Antino, L.H. Sneed, C. Carloni, C. Pellegrino. Effect of the inherent eccentricity in single-lap direct-shear tests of PBO FRCM-concrete joints. Compos Struct 142 (2016) 117–129.

DOI: 10.1016/j.compstruct.2016.01.076

Google Scholar

[27] C. Carloni, S. Verre, L.H. Sneed, L. Ombres. Loading rate effect on the debonding phenomenon in fiber reinforced cementitious matrix-concrete joints. Compos - Part B: Eng 108 (2017) 301–314.

DOI: 10.1016/j.compositesb.2016.09.087

Google Scholar

[28] G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenco, D.V. Oliveira, F. Paolacci, C.G. Papanicolaou. Mortar-based systems for externally bonded strengthening of masonry. Mater Struct 47 (2014) 2021-(2037).

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[29] G. Carozzi, C. Poggi, Mechanical properties and debonding strength of fabric reinforced cementitious matrix (FRCM) systems for masonry strengthening, Compos - Part B: Eng. 70 (2015) 215-230.

DOI: 10.1016/j.compositesb.2014.10.056

Google Scholar

[30] T.D. Krevaikas, T.C. Triantafillou. Masonry confinement with fiber-reinforced polymers. J Compos Constr 9: 2 (2005) 128–135.

DOI: 10.1061/(asce)1090-0268(2005)9:2(128)

Google Scholar

[31] A. Borri, G. Castori, M. Corradi. Masonry columns confined by steel fiber composite wraps. Materials 4(1) (2011) 311-326.

DOI: 10.3390/ma4010311

Google Scholar

[32] L. Ombres. Confinement effectiveness in eccentrically loaded masonry columns strengthened by fiber reinforced cementitious matrix (FRCM) jackets. Key Eng Mat 624 (2015) 551-558.

DOI: 10.4028/www.scientific.net/kem.624.551

Google Scholar

[33] ASTM C109/C109M-16a. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, West Conshohocken, PA (2016) 10 pp.

DOI: 10.1520/c0109_c0109m-20

Google Scholar

[34] Kerakoll S. p.A. – web site: <www. kerakoll. com> [accessed Feb 2017].

Google Scholar