Effect of Sulfuric Acid Treatment and Calcination on Commercial Zirconia Nanopowder

Article Preview

Abstract:

The modification of commercial zirconia nanopowder by sulfuric acid and heat treatment was conducted. The aim of this present research was to obtain a stable modified zirconia nanopowder chemically and thermally by studying the effect of sulfuric acid treatment and calcination temperature on commercial zirconia nanopowder. The material was prepared by dispersing the commercial zirconia nanopowder into 0.2, 0.5 and 0.8 M sulfuric acid solutions, followed by calcination at varied temperatures, i.e. 600, 700, 800 and 900 °C. The so called sulfated zirconias then were characterized their physicochemical properties using FT-IR, XRD and SEM-EDX analysis methods. The optimized condition for that modification was obtained by using sulfuric acid of 0.8 M and calcination temperature of 600 °C. The characterization results also revealed that using ammonia adsorption method, the acidity of the catalyst was found to be 1.06 mmol/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-137

Citation:

Online since:

October 2017

Export:

Price:

* - Corresponding Author

[1] G.D. Yadav, J.J. Nair, Sulfated zirconia and its modified versions as promising catalysts for industrial processes, Micropor. Mesopor. Mat. 33 (1999) 1-48.

DOI: 10.1016/s1387-1811(99)00147-x

Google Scholar

[2] C.J. Norman, P.A. Goulding, I. McAlpine, Role of anions in the surface area stabilisation of zirconia, Catal. Today 20 (1994) 313-322.

DOI: 10.1016/0920-5861(94)80009-x

Google Scholar

[3] X. Song, A. Sayari, Sulfated zirconia-based strong solid-acid catalysts: recent progress, Catal. Rev. Sci. Eng. 38 (1996) 329-412.

DOI: 10.1080/01614949608006462

Google Scholar

[4] K. Arata, Solid Superacids, Adv. Catal. 37 (1990) 164-210.

Google Scholar

[5] S. Ardizzone, C.L. Bianchi, W. Cattagni, V. Ragaini, Effects of the precursor features and treatments on the catalytic performance of SO4/ZrO2, Catal. Letters 49 (1997) 193-198.

DOI: 10.1023/a:1019049103916

Google Scholar

[6] M. Busto, C.R. Vera, J.M. Grau, Optimal process conditions for the isomerization-cracking of long-chain n-paraffins to high octane isomerizate gasoline over Pt/SO42-ZrO2 catalysts, Fuel Process. Technol. 92 (2011) 1675-1684.

DOI: 10.1016/j.fuproc.2011.04.010

Google Scholar

[7] A.E.A. Said, M.M. A El-Wahab, M.A. El-Aal, The catalytic performance of sulfated zirconia in the dehydration of methanol to dimethyl ether, J. Mol. Catal. A: Chem. 394 (2014) 40-47.

DOI: 10.1016/j.molcata.2014.06.041

Google Scholar

[8] Y. Song, J. Tian, Y. Ye, Y. Jin, X. Zhou, J. Wang, L. Xu, Effects of calcination temperature and water-washing treatment on n-hexane hydroisomerization behavior of Pt-promoted sulfated zirconia based catalysts, Catal. Today 212 (2013) 108-114.

DOI: 10.1016/j.cattod.2012.07.024

Google Scholar

[9] S. Pfeifer, P. Demirci, R. Duran, H. Stolpmann, A. Renfftlen, S. Nemrava, R. Niewa, B. Clauß, M.R. Buchmeiser, Synthesis of zirconia toughened alumina (ZTA) fibers for high performance materials, J. Eur. Ceram. Soc. 36 (2016) 725-731.

DOI: 10.1016/j.jeurceramsoc.2015.10.028

Google Scholar

[10] A. Suseno, K. Wijaya, W. Trisunaryanti, M. Shidiq, Synthesis and characterization of ZrO2-pillared bentonites, Asian J. Chem. 27 (2015) 2619-2623.

DOI: 10.14233/ajchem.2015.18599

Google Scholar

[11] M. Ejtemaei, A. Tavakoli, N. Charchi, B. Bayati, A.A. Babaluo, Y. Bayat, Synthesis of sulfated zirconia nanopowders via polyacrylamide gel method, Adv. Powder Technol. 25 (2014) 840-846.

DOI: 10.1016/j.apt.2013.12.009

Google Scholar

[12] S. Tominaka, N. Akiyamaa, F. Croce, T. Momma, B. Scrosati, T. Osaka, Sulfated zirconia nanoparticles as a proton conductor for fuel cell electrodes, J. Power Sources 185 (2008) 656-663.

DOI: 10.1016/j.jpowsour.2008.09.001

Google Scholar

[13] I.I. Abu, D.D. Das, H.K. Mishra, A.K. Dalai, Studies on platinum-promoted sulfated zirconia alumina: effects of pretreatment environment and carrier gas on n-butane isomerization and benzene alkylation activities, J. Colloid Interface Sci. 267 (2003).

DOI: 10.1016/s0021-9797(03)00647-7

Google Scholar

[14] S. Vijay, E.E. Wolf, A highly active and stable platinum-modified sulfated zirconia catalyst 1. Preparation and activity for n-pentane isomerization, Appl. Catal. A: Gen. 264 (2004) 117-124.

DOI: 10.1016/j.apcata.2003.12.036

Google Scholar

[15] T. Yamaguchi, Application of ZrO2 as a catalyst and a catalyst, Catal. Today 20 (1994) 199-218.

Google Scholar

[16] W. Stichert, F. Schüth, Synthesis of catalytically active high surface area monoclinic sulfated zirconia, J. Catal. 174 (1998) 242-245.

DOI: 10.1006/jcat.1998.1962

Google Scholar

[17] F. Babou, G. Coudurier, J.C. Vedrine, Acidic properties of sulfated zirconia: an infrared spectroscopic study, J. Catal. 152 (1995) 341-349.

DOI: 10.1006/jcat.1995.1088

Google Scholar

[18] F. Heshmatpour, R.B. Aghakhanpour, Synthesis and characterization of superfine pure tetragonal nanocrystalline sulfated zirconia powder by a non-alkoxide sol-gel route, Adv. Powder Technol. 23 (2012) 80-87.

DOI: 10.1016/j.apt.2010.12.012

Google Scholar

[19] A. Sinhamahapatra, N. Sutradhar, M. Ghosh, H.C. Bajaj, A.B. Panda, Mesoporous sulfated zirconia mediated acetalization reactions, Appl. Catal A: Gen. 402 (2011) 87-93.

DOI: 10.1016/j.apcata.2011.05.032

Google Scholar

[20] K. Föttinger, K. Zorn, H. Vinek, Influence of the sulfate content on the activity of Pt containing sulfated zirconia, Appl. Catal. A: Gen. 284 (2005) 69-75.

DOI: 10.1016/j.apcata.2005.01.019

Google Scholar

[21] F.D. Rey-Bueno, A. Garcia-Rodrigues, A. Mata-Arjona, F.J.D. Rey-Perez-Caballero, Acidity of montmorillonite-(Ce or Zr) phosphate crosslinked compounds, Clays and Clay Miner. 43 (1995) 554-561.

DOI: 10.1346/ccmn.1995.0430505

Google Scholar

[22] J.R. Sohn, T.D. Kwon, S.B. Kim, Characterization of zirconium sulfate supported on zirconia and activity for acid catalysis, Bull. Korean Chem. 22 (2001) 1309-1315.

Google Scholar