Next-Generation Biomaterials for Bone-Tissue Regeneration: Mg-Alloys on the Move

Article Preview

Abstract:

Disorders related to the bone health are becoming a significant concern due to subsequent rise in ageing human population. It is estimated that more than two million bone-surgeries are performed worldwide with an annual cost of $2.5 billion. In order to replace damaged bone-tissues and restore their function, biomaterials consisting of stainless steels, cobalt-chromium and titanium alloys are implanted. However, these permanent (non-biodegradable) implants often lead to stress-shielding effects and ions release as they interact with the cells and fluids in the body. It is required to overcome these issues by improving the quality of implant materials and increasing their service life. Recently, research in biodegradable materials, consisting of magnesium alloys in particular, has received global attention owning to their biocompatibility and closer mechanical properties to the natural bone. However, due to their rapid corrosion rate in the body fluids, clinical applications of Mg-alloys as viable bone-implants have been restricted. A number of Mg-alloys have been tested since (both in vivo and in vitro) to optimize their biodegradation rare and corrosion properties. The present review summarizes the most recent developments in Mg-alloys designed with biodegradation tailored to the bone-cells growth and highlights the most successful ways to optimize their surface properties for optimum cell/material interaction.

You have full access to the following eBook

Info:

Periodical:

Pages:

306-315

Citation:

Online since:

September 2018

Export:

* - Corresponding Author

[1] B.L. Riggs, L.J. Melton III, The worldwide problem of osteoporosis: Insights afforded by epidemiology, Bone, 17 (1995) S505-S511.

DOI: 10.1016/8756-3282(95)00258-4

Google Scholar

[2] E.A. Chrischilles, C.D. Butler, C.S. Davis, R.B. Wallace, A model of lifetime osteoporosis impact, Arch. Intern. Med., 151 (1991) 2026-(2032).

DOI: 10.1001/archinte.1991.00400100100017

Google Scholar

[3] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, second ed., Academic Press, (2004).

Google Scholar

[4] L.L. Hench and I. Thompson, Twenty-first century challenges for biomaterials, J. Royal Soc. Interf., 7 (2010) S379-S391.

Google Scholar

[5] M.B. Kannan and R.K.S. Raman, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomater., 29 (2008) 2306-2314.

DOI: 10.1016/j.biomaterials.2008.02.003

Google Scholar

[6] M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A, 33A (2002) 477-486.

Google Scholar

[7] P.S. Walker and B.L. Gold, The tribology (friction, lubrication and wear) of all-metal artificial hip joints, Wear, 17 (1971) 285-299.

DOI: 10.1016/0043-1648(71)90032-9

Google Scholar

[8] J. Brettle, A survey of the literature on metallic surgical implants, Injury, 2/1 (1970) 26-39.

Google Scholar

[9] I. Gotman, Characteristics of metals used in implants, J. Endourol., 11 (2009) 383-389.

Google Scholar

[10] L.A. Pruitt and A.M. Chakravartula, Mechanics of Biomaterials: Fundamental principles for implant design, MRS Bull., 37 (2012) 698-698.

DOI: 10.1557/mrs.2012.165

Google Scholar

[11] C. Oldani and A. Dominguez, Titanium as a biomaterial for Implants, in: S.K. Fokter (Eds.), Recent Advances in Arthroplasty, InTech Open, (2012).

DOI: 10.5772/27413

Google Scholar

[12] P.Siegkas, V.Tagarielli and N.Petrinic, Modelling stochastic foam geometries for FE simulations using 3D Voronoi cells, Procedia Mater. Sci., 4 (2014) 221-226.

DOI: 10.1016/j.mspro.2014.07.604

Google Scholar

[13] L.A. Pruitt and A.M. Chakravartula, Mechanics of Biomaterials: Fundamental principles for implant design, first ed., Cambridge University Press, (2011).

DOI: 10.1017/cbo9780511977923

Google Scholar

[14] J. Nagels, M. Stokdijk and P.M. Rozing, Stress shielding and bone resorption in shoulder arthroplasty, J. Shoulder Elbow Surg., 12 (2003) 35-39.

DOI: 10.1067/mse.2003.22

Google Scholar

[15] J.J. Jacobs, N.J. Hallab, A.K. Skipor and R.M. Urban, Metal degradation products: a cause for concern in metal-metal bearings, Clin. Orthop. Relat. Res., 417 (2003) 139-147.

DOI: 10.1097/01.blo.0000096810.78689.62

Google Scholar

[16] D.A. Puleo and W.W. Huh, Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells, J. Appl. Biomater., 6 (1995) 109-116.

DOI: 10.1002/jab.770060205

Google Scholar

[17] M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomater., 27 (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[18] F.Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit and F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci., 12 (2008) 63-72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[19] B.D. Ulery, L.S. Nair and C.T. Laurencin, Biomedical applications of biodegradable polymers, J. Polym. Sci., Part B: Polym. Phys., 49 (2011) 832-864.

DOI: 10.1002/polb.22259

Google Scholar

[20] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomater., 26 (2005) 3557-3563.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[21] M. Purusothaman and M. Sasikumar, Processing/properties and applications of Magnesium based metal matrix composites: A review, Internatio. J. Intellect. Advanc. Resear.Engineer. Computat., 5 (2017) 1995-(2007).

Google Scholar

[22] Y.K. Pan, C.Z. Chen, D.G. Wang and X. Yu, Microstructure and biological properties of micro‐arc oxidation coatings on ZK60 magnesium alloy, J. Biomed. Mater. Res. Part B Appl. Biomater., 10B (2012) 1574-1586.

DOI: 10.1002/jbm.b.32726

Google Scholar

[23] J.W. Choi, Y.M. Kong, H.E. Kim and I.S. Lee, Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3, J. Am. Ceram. Soc., 81 (1998) 1743-1748.

DOI: 10.1111/j.1151-2916.1998.tb02543.x

Google Scholar

[24] T.V. Thamaraiselvi and S. Rajeswari, Biological evaluation of bioceramic materials-A review, Trends Biomater. Artif. Organs., 18 (2004) 9-17.

Google Scholar

[25] J.E. Sun, M. Chen, G. Cao, Y. Bi, D. Liu and J. Wei, The effect of nano-hydroxyapatite on the microstructure and properties of Mg–3Zn–0.5 Zr alloy, J. Compos Mater., 48 (2014) 825-834.

DOI: 10.1177/0021998313478259

Google Scholar

[26] Y. Chen, Z. Xu, C. Smith and J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater., 10 (2014) 4561-4573.

DOI: 10.1016/j.actbio.2014.07.005

Google Scholar

[27] K.Y. Renkema, R.T. Alexander, R.J. Bindels and J. G. Hoenderop. Calcium and phosphate homeostasis: concerted interplay of new regulators, Ann. Med., 40 (2008) 82-91.

DOI: 10.1080/07853890701689645

Google Scholar

[28] H.Z. Ye and X.Y. Liu, Review of recent studies in magnesium matrix composites, J. Mater. Sci., 39 (2004) 6153-6171.

Google Scholar

[29] R.B. Bell and C.S. Kindsfater, The use of biodegradable plates and screws to stabilize facial fractures, J. Oral Maxillofac. Surg., 64 (2006) 31-39.

DOI: 10.1016/j.joms.2005.09.010

Google Scholar

[30] P.D. Saltman and L.G. Strause, The role of trace minerals in osteoporosis, The J. Am. Coll. Nutr., 12 (1993) 384-389.

Google Scholar

[31] A. Martin and J. Llorca, Mechanical behaviour and failure mechanisms of a binary Mg- 6% Zn alloy reinforced with SiC particulates, J. Mater. Sci. Engin. A, 201 (1995) 77-87.

DOI: 10.1016/0921-5093(95)09777-5

Google Scholar

[32] D. Tie, F. Feyerabend, W.D. Mueller, R. Schade, K. Liefeith, K.U. Kainer and R. Willumeit, Antibacterial biodegradable Mg-Ag alloys, J. Eur. Cell. Mater., 16 (2013) 284-298.

DOI: 10.22203/ecm.v025a20

Google Scholar

[33] G.E.J. Poinern, S. Brundavanam and D. Fawcett. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant, Amer. J. Biomed. Engin., 2 (2012) 218-240.

DOI: 10.5923/j.ajbe.20120206.02

Google Scholar

[34] L. Liu, F. Yuan, M. Zhao, C. Gao, P. Feng, Y. Yang, S. Yang and C. Shuai, Rare earth element yttrium modified Mg-Al-Zn alloy: Microstructure, degradation properties and hardness, Mater., 10 (2017) 477.

DOI: 10.3390/ma10050477

Google Scholar

[35] R.Z. Wu, Z.K. Qu and M.L. Zhang, Reviews on the influences of alloying elements on the microstructure and mechanical properties of Mg–Li base alloys, Rev. Adv. Mater. Sci., 24 (2010).35-43.

Google Scholar

[36] Z. Li,, X. Gu, S. Lou and Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomater., 29 (2008) 1329-1344.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[37] X. Gu, Y. Zheng, Y. Cheng, S. Zhong and T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomater., 30 (2009) 484-498.

DOI: 10.1016/j.biomaterials.2008.10.021

Google Scholar

[38] X.N. Gu, X.H. Xie, N. Li, Y.F. Zheng, L. Qin, In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal, Act. Biomater., 8 (2012) 2360-2374.

DOI: 10.1016/j.actbio.2012.02.018

Google Scholar

[39] R. Xin, M. Wang, J. Gao, P. Liu and Q. Liu, Effect of microstructure and texture on corrosion resistance of magnesium alloy, Mater. Sci. Foru., 610-613 (2009) 1160-1163.

DOI: 10.4028/www.scientific.net/msf.610-613.1160

Google Scholar

[40] V. Kaesel, P.‐T. Tai, Fr. Bach, H. Haferkamp, F. Witte and H. Windhagen, Approach to control the corrosion of magnesium by alloying. In Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications (2005).

DOI: 10.1002/3527603565.ch84

Google Scholar

[41] N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R.Willumeit, and K. Kainer, Magnesium alloys as implant materials–principles of property design for Mg–RE alloys, Act., Biomater., 6 (2010) 1714-1725.

DOI: 10.1016/j.actbio.2009.09.010

Google Scholar

[42] J. Gray and B. Luan, Protective coatings on magnesium and its alloys—a critical review, J. Alloys Compd., 336 (2002) 88-113.

DOI: 10.1016/s0925-8388(01)01899-0

Google Scholar

[43] G. Song, A. Atrens, X. Wu, and B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, J. Corro. Sci., 40 (1998)1769-1791.

DOI: 10.1016/s0010-938x(98)00078-x

Google Scholar

[44] V. Mouriño and A. R. Boccaccini, Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds, J. R. Soc. Interf., 7 (210) 209-227.

DOI: 10.1098/rsif.2009.0379

Google Scholar

[45] H. Wang, Y. Estrin, and Z. Zúberová, Bio-corrosion of a magnesium alloy with different processing histories, Mater. Lett., 62 (2008) 2476-2479.

DOI: 10.1016/j.matlet.2007.12.052

Google Scholar

[46] S.V. Dorozhkin, Calcium orthophosphate coatings on magnesium and its biodegradable alloys, Acta Biomater., 10 (2014) 2919-2934.

DOI: 10.1016/j.actbio.2014.02.026

Google Scholar

[47] B. Wang, P. Huang, C. Ou, K. Li, B. Yan, and W. Lu, In vitro corrosion and cytocompatibility of ZK60 magnesium alloy coated with hydroxyapatite by a simple chemical conversion process for orthopedic applications, Int. J. Mol. Sci., 14 (2013).

DOI: 10.3390/ijms141223614

Google Scholar

[48] S. Singh and N. Chauhan, A Evaluation of Pure Mg and Mg-Zn ALLOYS as a Biomaterial in Bone Remodelling-A Review, J. Mater. Sci. Mechan. Engin., 3 (2016) 149-151.

Google Scholar

[49] B.R. Sunil, C. Ganapathy, T.S. Kumar and U. Chakkingal, Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants, J. Mech. Behav. Biomed. Mater., 40 (2014) 178-189.

DOI: 10.1016/j.jmbbm.2014.08.016

Google Scholar

[50] K. Kowalski, M. Nowak, J. Jakubowicz, and M. Jurczyk, The effects of hydroxyapatite addition on the properties of the mechanically alloyed and sintered Mg-RE-Zr alloy, J. Mater. Eng. Perform., 25 (2016) 4469-4477.

DOI: 10.1007/s11665-016-2306-y

Google Scholar

[51] Y. Huang, D. Liu, L. Anguilano, C. You, and M. Chen, Fabrication and characterization of a biodegradable Mg–2Zn–0.5Ca/1β-TCP composite, Mater. Sci. Eng. C., 54 (2015) 120-132.

DOI: 10.1016/j.msec.2015.05.035

Google Scholar

[52] Y. Yan, Y. Kang, D. Li, K. Yu, T. Xiao, Y. Deng, H. Dai, Y. Dai, H. Xiong, and H. Fang, Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca3 (PO4) 2/Mg-Zn composites prepared by powder metallurgy: the adding β-Ca3 (PO4)2, hot extrusion and aging treatment, Mater. Sci. Eng. C, 74 (2017).

DOI: 10.1016/j.msec.2016.12.132

Google Scholar

[53] S. N. Dezfuli, Z. Huan, A. Mol, S. Leeflang, J. Chang, and J. Zhou, Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications, Mater. Sci. Eng. C, 79 (2017) 647-660.

DOI: 10.1016/j.msec.2017.05.021

Google Scholar

[54] P.-C. Wong, P.-H. Tsai, T.-H. Li, C.-K. Cheng, J. Jang and J. Huang, Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials, J. Alloys Compd., 699 (2017) 914-920.

DOI: 10.1016/j.jallcom.2017.01.010

Google Scholar

[55] Y. Wan, T. Cui, W. Li, C. Li, J. Xiao, Y. Zhu, D. Ji, G. Xiong, and H. Luo, Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route, Mater. Des., 99 (2016) 521-527.

DOI: 10.1016/j.matdes.2016.03.096

Google Scholar

[56] K. Kowalski, M. Nowak and M. Jurczyk, Mechanical and Corrosion Properties of Magnesium-Bioceramic Nanocomposites, Arch. Metall. Mater., 61 (2016) 1437-1440.

DOI: 10.1515/amm-2016-0235

Google Scholar

[57] D. Liu, Y. Liu, Y. Zhao, Y. Huang, and M. Chen, The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application, Mater. Sci. Eng. C, 77 (2017) 690-697.

DOI: 10.1016/j.msec.2017.03.239

Google Scholar

[58] Z. Huan, C. Xu, B. Ma, J. Zhou, and J. Chang, Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles, RSC Advan., 6 (2016) 47897-47906.

DOI: 10.1039/c5ra27302a

Google Scholar

[59] R. del Campo, B. Savoini, A. Munoz, M. Monge, and G. Garcés, Mechanical properties and corrosion behavior of Mg–HAP composites, J. Mech. Behav. Biomed. Mater., 39 (2014) 238-246.

DOI: 10.1016/j.jmbbm.2014.07.014

Google Scholar

[60] S.Z. Khalajabadi, M.R.A. Kadir, S. Izman and M. Kasiri-Asgarani, Microstructural characterization, biocorrosion evaluation and mechanical properties of nanostructured ZnO and Si/ZnO coated Mg/HA/TiO2/MgO nanocomposites, Surf. Coat. Technol., 277 (2015).

DOI: 10.1016/j.surfcoat.2015.07.006

Google Scholar

[61] M. Razavi, M. Fathi and M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Mater. Sci. Eng., A 527 (2010) 6938-6944.

DOI: 10.1016/j.msea.2010.07.063

Google Scholar