Corrosion Inhibition of Martensitic Stainless Steel in Chloride Medium by Calcium Gluconate-Solanum Tuberosum Extract as Surfactant

Article Preview

Abstract:

Corrosion inhibition of martensitic stainless steel (MSS) in magnesium chloride was investigated in the absence and presence of calcium gluconate as corrosion inhibitor at ambient temperature. The effects of inhibitor concentration were studied using weight loss and polarization method. The results obtained showed that calcium gluconate acts as an inhibitor for martensitic stainless steel in MgCl and decreases the corrosion rate. The inhibition performance was found to increase with the increase in inhibitor concentration. The maximum inhibition efficiency obtained was 99 % at 2g/v inhibitor concentration, the adsorption of calcium gluconate on the surface of Martensitic stainless steel was found to obey Langmuir adsorption isotherm. However, the addition of solanum tuberosum extract in the inhibitor decreases the corrosion rate of martesitic steel significantly in chloride solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-111

Citation:

Online since:

March 2019

Export:

Price:

* - Corresponding Author

[1] Ostovari.A, Hoseinch S.M, Pei Kari .M, Shadizadeh.S.R, Haashemi S.J, Corros sci.51,1935 (2009).

Google Scholar

[2] Kosari. A, Momeni .M, Parvizi.R, Zakeri. M, Moayed. M.H, Davoodi. A, Eshghi. H, corros. Sci. 53, 3058 (2011).

DOI: 10.1016/j.corsci.2011.05.009

Google Scholar

[3] Dahmani. M, El-Tauhami. A, Al-Deyab. S.S, Hammouti. B, Bouyanzer A, Int.J. Electrochem. sci.5, 1060 (2010).

Google Scholar

[4] Udiandeye.J.A, Okewale. A.O, Eruk. B.R, Igbokwe.P.K, Int.J.Basic Appl .sci.11, 48(2011).

Google Scholar

[5] Hmamou D.B, Salghi. R, Zarrouk. A, Hammouti. B, Al-Deyab S.S, Bazzi. L.H, Zarrok. H, Chakir.A, Bammou. L, Int. J Eletrochem. Sci. 7, 2361 (2012).

Google Scholar

[6] LAHHIT. N, Bouyanzer. A, Desjobert, J.M, Hammouuti. B, Saghi .R, Costa .J, Jama .C, Bentiss .F, Majidi .L, Portugaliae Eletrochemica Acta 29,127(2011).

DOI: 10.4152/pea.201102127

Google Scholar

[7] Van Loyen D, G. Zocher,Werkst. Korros. 1990, 41, 613.

Google Scholar

[8] X. Liu, J. Han, C. Sun, Y. Rui, Q. Wang, Corros. Prot. 2012,33,296.

Google Scholar

[9] Zhang D.Q, X. Jin, B. Xie, H. Goun Joo, L. X. Gao, K. YLee, Surf. Interface Anal. 2012,44, 78.

Google Scholar

[10] M.Mahdavian, M, Naderi R, Corros. Sci. 2011, 53, 1194.

Google Scholar

[11] Rajendran S., Apparao B.V., and Palanisway N., calcium gluconate as corrosion inhibitor for mild steel in low chloride media, British Corrosion Journal, 33 (1998) 315- 317.

DOI: 10.1179/bcj.1998.33.4.315

Google Scholar

[12] Varga K, Baradial P, Barnard WO, Myburg G,Halmosg P, Portigieter JH (1997).Comparative study of surface properties of austenitic stainless steel in sulfuric and hydrochloric acid solutions. Elecrochem Acta 42:25-35.

DOI: 10.1016/0013-4686(96)00163-6

Google Scholar

[13] Fatoba O.S., Popoola A.P.I. and Aigbodion V.S. 2016. Experimental study of Hardness values and Corrosion Behaviour of Laser Alloyed Zn-Sn-Ti Coatings of UNS G10150 Mild Steel, Journal of Alloys and Compounds, 658, 248-254.

DOI: 10.1016/j.jallcom.2015.10.169

Google Scholar

[14] Fatoba O.S., Adesina O.S. Popoola A.P.I. (2018). Evaluation of microstructure, microhardness, and electrochemical properties of laser-deposited Ti-Co coatings on Ti-6Al-4V Alloy. The International Journal of Advanced Manufacturing Technology. http://dx.doi.org/10.1007/s00170-018-2106-7.

DOI: 10.1007/s00170-018-2106-7

Google Scholar

[15] Makhatha M.E., Fatoba O.S. and Akinlabi E.T. 2018. Effects of rapid solidification on the microstructure and surface analyses of laser-deposited Al-Sn coatings on AISI 1015 steel. International Journal of Advanced Manufacturing Technology 94 (1-4), 773-787.

DOI: 10.1007/s00170-017-0876-y

Google Scholar

[16] Fatoba O.S., Popoola A.P.I. and Aigbodion V.S. (2018). Laser Alloying of Al-Sn Binary Alloy onto Mild Steel: InSitu Formation. Hardness and Anti-Corrosion Properties. Lasers in Engineering, 39(3-6), 292-312.

Google Scholar

[17] Fatoba, O.S; Popoola, A.P.I; Fedotova, T; Pityana, S.L. (2015) Electrochemical Studies on the Corrosion Behaviour of Laser Alloyed Zn-Sn Coatings on UNS G10150 Steel in 1M HCl Solution. Silicon. 7(4), 357-369.

DOI: 10.1007/s12633-015-9319-2

Google Scholar

[18] Gharehbaghi R., Fatoba O.S. and Akinlabi E.T. (2018). Influence of Scanning Speed on the Microstructure of Deposited Al-Cu-Fe Coatings on a Titanium Alloy Substrate by Laser Metal Deposition Process. Proceedings at the 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT 2018), Cape town, South Africa, pp.44-49.

DOI: 10.1109/ICMIMT.2018.8340418

Google Scholar

[19] O.S. Fatoba; A.P.I Popoola; V.S. Aigbodion (2018). Electrochemical Studies and Surface Analysis of Laser Deposited Zn-Al-Sn Coatings on AISI 1015 Steel. International Journal of Surface Science and Engineering. 12 (1), 40-59.

DOI: 10.1504/IJSURFSE.2017.10009146

Google Scholar

[20] Fatoba, O.S; Popoola, A.P.I; Fedotova, T. (2015) Characterization and Corrosion behaviour of Zn-Sn Binary Alloy Coatings in 0.5M H2SO4 solution. Journal of Electrochemical Science and Technology. 6(4), 65-74.

DOI: 10.33961/jecst.2015.6.2.65

Google Scholar

[21] Popoola, A.P.I., Fatoba, O.S., Aigbodion, V.S. And Popoola, O.M. 2017. Tribological Evaluation of Mild Steel with Ternary Alloy of Zn-Al-Sn by Laser Deposition, International Journal of Advanced Manufacturing Technology, 89(5-8), 1443-1449. DOI 10.1007/s00170-016-9170-7.

DOI: 10.1007/s00170-016-9170-7

Google Scholar

[22] Rajendran, S, R. Maria,R. Joany, B. V. Apparao, N. Palaniswamy, Trans. SAEST 2000, 35, 113.

Google Scholar

[23] Lahodny, O., Kapor, F. Mater. Sci. Forum 1998, 289–292, 1205.

Google Scholar

[24] Rajendran,S, Apparao B.V, Palaniswamy,N, Br. Corros. J.1998,33,315.

Google Scholar