Experimental Study on Heat Dissipative Ability in Recycled Thermoplastic Vulcanizate and Reclaimed Rubber Composites

Article Preview

Abstract:

In our time with the growing cooling demand in electronics and energy industries, new thermally conductive materials are in high demand. Thermal gasket and thermal interface materials (TIM) are applications acquiring the characteristics of the thermally conductive materials. They are used to offer bonding strength and efficient heat dissipation for heat dissipating device applications. These materials are inserted between two components in order to increase the thermal coupling between them. Elastomeric materials are promising as the thermal gasket and TIM. They are, however, limited for thermal conductivity causing a thermal insulator behaviour. In this framework, the major challenge is to create suitable elastomeric composites for enhancing thermal conductivity, whereas remaining a good elastic behavior. This article presents the effects of thermally conductive fillers (aluminum nitrile and zinc oxide) on thermal properties and flexibility of recycled thermoplastic elastomer vulcanizate composites and reclaimed rubber composites, while the analysis of composite morphology is scrutinized. The objective of this research is to perceive the characteristics of recycled elastomeric composites in order to deduce a fundamental notion to develop the gaskets or TIMs from recycled materials. New flexible composites are capable to provide approximately 0.4 W/m-K of thermal conductivity. The result indicates that the composites are conceivable to be applied for thermally conductive tape or adhesive applications which required the thermal conductivity in the range of 0.4-0.5 W/m-K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

276-285

Citation:

Online since:

August 2020

Export:

Price:

* - Corresponding Author

[1] F. Lebon, R. Chadouli, I. Rosu, M. Makhlouf, Numerical study of the gasket thermal conductivity effect on the thermal contact resistance between two solids in contact, Frontiers in Heat and Mass Transfer (FHMT). (2017).

DOI: 10.5098/hmt.8.30

Google Scholar

[2] H. Chen, V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: Fundamentals and applications, Prog. Polym. Sci. 59 (2016) 41-85.

DOI: 10.1016/j.progpolymsci.2016.03.001

Google Scholar

[3] W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride reinforced polyethylene Composites, Mater. Res. Bull. 42 (2017) 1863-1873.

DOI: 10.1016/j.materresbull.2006.11.047

Google Scholar

[4] Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A Review, Prog. Polym. Sci. 36 (2011) 914-944.

DOI: 10.1016/j.progpolymsci.2010.11.004

Google Scholar

[5] J. Ma, Z. Wang, M. Jing, X. Shen, Thermal conducting silicone rubber composites filled with aligned nickel nanoparticles induced by magnetic field, Appl. Mech. Mater. 488 (2014) 40-43.

DOI: 10.4028/www.scientific.net/amm.488-489.40

Google Scholar

[6] D. Kim, M. Kim, J. Lee, J. Lim, K. Kim, B. Lee, S. Kim, Synergistic effect of hybrid filler contained composites on thermal conductivity, Mater. Sci. forum. 544 (2007) 483-486.

DOI: 10.4028/www.scientific.net/msf.544-545.483

Google Scholar

[7] S. Kim, D. Kim, D. Kim, M. Kim, J. Park, Study on thermal conductivity of polythertheketone/ thermally conductive filler composites, Solid state phenom. 124 (2007) 1079-1082.

DOI: 10.4028/www.scientific.net/ssp.124-126.1079

Google Scholar

[8] Y. Chen, C. Xu, L. Cao, Y. Wang, X. Cao, PP/EPDM-based dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: Preparation, rheology, morphology, crystallization and mechanical properties, Polym. Test. 31 (2012), 728-736.

DOI: 10.1016/j.polymertesting.2012.05.010

Google Scholar

[9] J. Song, Percolation Phenomenon in Thermal Conductivity of Carbon Black Filled Rubber and Morphology, Adv. Mater. Res. 146 (2011) 575-580.

DOI: 10.4028/www.scientific.net/amr.146-147.575

Google Scholar

[10] K. Lu, V. Duin, J. Loos, G. With, On the volume organisation of thermoplastic vulcanisates (TPVs) as revealed by scanning transmission electron microscopy (STEM) tomography, Polymer. 53 (2012) 4171-4177.

DOI: 10.1016/j.polymer.2012.06.041

Google Scholar

[11] D. Chung, Materials for thermal conduction. Appl. Therm. Eng. 21 (2011) 1593-1605.

Google Scholar

[12] I. Tsekmes, R. Kochetov, P. Morshuis, J. Smit, Thermal conductivity of polymeric composites: A review. IEEE International Conference on Solid Dielectrics (ICSD). (2013) 678-681.

DOI: 10.1109/icsd.2013.6619698

Google Scholar

[13] H. Ebadi-Dehaghani, M. Nazempour, Thermal conductivity of nanoparticles filled polymers, In Smart nanoparticles technology. (2012) 1-23.

DOI: 10.5772/33842

Google Scholar

[14] F. Du, C. Guthy, T. Kashiwagi, J. Fischer, K. Winey, An infiltration method for preparing single wall nanotube/epoxy composites with improved thermal conductivity, J. Polym. Sci. Poly. Phys. 44 (2006) 1513-1519.

DOI: 10.1002/polb.20801

Google Scholar

[15] J.Carson, S. Lovatt, D. Tanner, A. Cleland, Thermal conductivity bounds for isotropic, porous materials, I. J. Heat Mass Tran. 48 (2005) 2150-2158.

DOI: 10.1016/j.ijheatmasstransfer.2004.12.032

Google Scholar

[16] S. Zhang, X. Cao, Y. Ma, Y. Ke, K. Zhang, F. Wang, The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites, Express Polymer Letters. (2011).

DOI: 10.3144/expresspolymlett.2011.57

Google Scholar

[17] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of thermal conductivity in composites: mechanisms, parameters and theory, Prog. Polym. Sci. 61 (2016) 1-28.

DOI: 10.1016/j.progpolymsci.2016.05.001

Google Scholar

[18] I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G. Kasaliwal, T. Villmow, Establishment, morphology and properties of carbon nanotube networks in polymer melts, Polymer. 53 (2012) 4-28.

DOI: 10.1016/j.polymer.2011.10.063

Google Scholar

[19] H. Park, A. Badakhsh, I. Im, I. M. Kim, C. Park, Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites, Appl. Therm. Eng. 107 (2016) 907-917.

DOI: 10.1016/j.applthermaleng.2016.07.053

Google Scholar

[20] J. Ma, Z. Wang, M. Jing, X. Shen, Thermal conducting silicone rubber composites filled with aligned nickel nanoparticles induced by magnetic field, Appl. Mech. Mater. 488 (2014) 40-43.

DOI: 10.4028/www.scientific.net/amm.488-489.40

Google Scholar

[21] D. Kim, M. Kim, J. Lee, J. Lim, K. Kim, B. Lee, S. Kim, Synergistic effect of hybrid filler contained composites on thermal conductivity, Mater. Sci. forum. 544 (2007) 483-486.

DOI: 10.4028/www.scientific.net/msf.544-545.483

Google Scholar

[22] M. Haddadi, B. Agoudjil, A. Boudenne, Thermal conductivity of polymer/carbon nanotube composites, Mater. Sci. Forum. 714 (2012) 99-113.

DOI: 10.4028/www.scientific.net/msf.714.99

Google Scholar

[23] A. Suplicz, J. Kovács, Development of thermally conductive polymer materials and their investigation, Mater. Sci. Forum. 729 (2013) 80-84.

DOI: 10.4028/www.scientific.net/msf.729.80

Google Scholar

[24] H. Ma, Z. Tian, Chain rotation significantly reduces thermal conductivity of single-chain polymers, J. Mater. Res. 34 (2019) 126-133.

DOI: 10.1557/jmr.2018.362

Google Scholar

[25] T. Saleesung, P. Saeoui, C. Sirisinha, Mechanical and thermal properties of thermoplastic elastomer based on low density polyethylene and ultra-fine fully-vulcanized acrylonitride butadiene rubber powder (UFNBRP), Polym. Test. 29 (2010) 977-983.

DOI: 10.1016/j.polymertesting.2010.08.008

Google Scholar

[26] M. Magioli, A.S. Sirqueira, B.G. Soares, The effect of dynamic vulcanization on the mechanical, dynamic mechanical and fatigue properties of TPV based on polypropylene and ground tire rubber, Polym. Test. 29 (2010), 840-848.

DOI: 10.1016/j.polymertesting.2010.07.008

Google Scholar