Geomaterials as Cost Effective Sorbent to Remove Fluoride from Water

Article Preview

Abstract:

As a regulated contaminants, fluorine compounds impact the health of millions of persons around the world. Adsorption method is employed to remove fluoride ions from a synthetic water using concrete waste materials as a low cost adsorbent and to evaluate its feasibility as an alternative agent to eliminate fluoride ions in aqueous solution. Influence of pH, concrete particles dosage, agitation speed, fluoride initial concentration and contact time on F removal were investigated by using batch mode. Fluoride removal has been obtained over a wide range (3-11). The rate of adsorption was rapid at the first 4 hours, while the equilibrium has been reached within 9 hrs. The desorption study revealed that fluoride adsorption onto concrete particles was chemical in nature. The kinetic of adsorption was fitted well with second-order rate model, while the adsorption behavior obeyed Freundlich model. This study obviously presents the applicability of concrete particles as low cost adsorbent to eliminate fluoride from water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-121

Citation:

Online since:

October 2020

Export:

Price:

* - Corresponding Author

[1] Hao, O.J. and Huang, C.P., 1986. Adsorption characteristics of fluoride onto hydrous alumina. Journal of environmental engineering, 112(6), pp.1054-1069.

DOI: 10.1061/(asce)0733-9372(1986)112:6(1054)

Google Scholar

[2] Bhatnagar, A., Kumar, E. and Sillanpää, M., 2011. Fluoride removal from water by adsorption—a review. Chemical engineering journal, 171(3), pp.811-840.

DOI: 10.1016/j.cej.2011.05.028

Google Scholar

[3] Li, Y.H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., Wu, D. and Wei, B., 2003. Removal of fluoride from water by carbon nanotube supported alumina. Environmental technology, 24(3), pp.391-398.

DOI: 10.1080/09593330309385572

Google Scholar

[4] Mukherjee, S. and Halder, G., 2018. A review on the sorptive elimination of fluoride from contaminated wastewater. Journal of environmental chemical engineering, 6(1), pp.1257-1270.

DOI: 10.1016/j.jece.2018.01.046

Google Scholar

[5] Habuda-Stanić, M., Ravančić, M.E. and Flanagan, A., 2014. A review on adsorption of fluoride from aqueous solution. Materials, 7(9), pp.6317-6366.

DOI: 10.3390/ma7096317

Google Scholar

[6] Simons, R., 1993. Trace element removal from ash dam waters by nanofiltration and diffusion dialysis. Desalination, 89(3), pp.325-341.

DOI: 10.1016/0011-9164(93)80145-d

Google Scholar

[7] Ndiaye, P.I., Moulin, P., Dominguez, L., Millet, J.C. and Charbit, F., 2005. Removal of fluoride from electronic industrial effluentby RO membrane separation. Desalination, 173(1), pp.25-32.

DOI: 10.1016/j.desal.2004.07.042

Google Scholar

[8] Parthasarathy, N., Buffle, J. and Haerdi, W., 1986. Study of interaction of polymeric aluminium hydroxide with fluoride. Canadian journal of chemistry, 64(1), pp.24-29.

DOI: 10.1139/v86-006

Google Scholar

[9] Hu, C.Y., Lo, S.L., Kuan, W.H. and Lee, Y.D., 2005. Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water research, 39(5), pp.895-901.

DOI: 10.1016/j.watres.2004.11.034

Google Scholar

[10] Ruixia, L., Jinlong, G. and Hongxiao, T., 2002. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber. Journal of colloid and interface science, 248(2), pp.268-274.

DOI: 10.1006/jcis.2002.8260

Google Scholar

[11] Yadav, A.K., Kaushik, C.P., Haritash, A.K., Kansal, A. and Rani, N., 2006. Defluoridation of groundwater using brick powder as an adsorbent. Journal of Hazardous materials, 128(2-3), pp.289-293.

DOI: 10.1016/j.jhazmat.2005.08.006

Google Scholar

[12] De Gisi, S., Lofrano, G., Grassi, M. and Notarnicola, M., 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, pp.10-40.

DOI: 10.1016/j.susmat.2016.06.002

Google Scholar

[13] Waghmare, S.S. and Arfin, T., 2015. Fluoride removal by clays, geomaterials, minerals, low cost materials and zeolites by adsorption: a review. International Journal of Science, Engineering and Technology Research, 4(11), pp.3663-3676.

Google Scholar

[14] Oguz, E., 2005. Adsorption of fluoride on gas concrete materials. Journal of hazardous materials, 117(2-3), pp.227-233.

DOI: 10.1016/j.jhazmat.2004.09.020

Google Scholar

[15] Oguz, E., 2007. Equilibrium isotherms and kinetics studies for the sorption of fluoride on light weight concrete materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 295(1-3), pp.258-263.

DOI: 10.1016/j.colsurfa.2006.09.009

Google Scholar

[16] Kang, W.H., Kim, E.I. and Park, J.Y., 2007. Fluoride removal capacity of cement paste. Desalination, 202(1-3), pp.38-44.

DOI: 10.1016/j.desal.2005.12.036

Google Scholar

[17] Ayoob, S. and Gupta, A.K., 2009. Performance evaluation of alumina cement granules in removing fluoride from natural and synthetic waters. Chemical Engineering Journal, 150(2-3), pp.485-491.

DOI: 10.1016/j.cej.2009.01.038

Google Scholar

[18] Fusheng, W., Wenqi, Q.I. and Tong, B.I., 2002. Water and wastewater monitoring analysis method. China Environmental Science Press, 12, pp.243-248.

Google Scholar

[19] Durán, A.C., Flores, I., Perozo, C. and Pernalete, Z., 2006. Immobilization of lead by a vermicompost and its effect on white bean (Vigna Sinenis var. Apure) uptake. International Journal of Environmental Science & Technology, 3(3), pp.203-212.

DOI: 10.1007/bf03325927

Google Scholar

[20] Wang, R.C., Kuo, C.C. and Shyu, C.C., 1997. Adsorption of phenols onto granular activated carbon in a liquid–solid fluidized bed. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 68(2), pp.187-194.

DOI: 10.1002/(sici)1097-4660(199702)68:2<187::aid-jctb651>3.0.co;2-1

Google Scholar

[21] Sujana, M.G., Thakur, R.S. and Rao, S.B., 1998. Removal of fluoride from aqueous solution by using alum sludge. Journal of Colloid and Interface Science, 206(1), pp.94-101.

DOI: 10.1006/jcis.1998.5611

Google Scholar

[22] Liu, H., Deng, S., Li, Z., Yu, G. and Huang, J., 2010. Preparation of Al–Ce hybrid adsorbent and its application for defluoridation of drinking water. Journal of Hazardous Materials, 179(1-3), pp.424-430.

DOI: 10.1016/j.jhazmat.2010.03.021

Google Scholar

[23] Das, D.P., Das, J. and Parida, K., 2003. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. Journal of colloid and interface science, 261(2), pp.213-220.

DOI: 10.1016/s0021-9797(03)00082-1

Google Scholar

[24] Ayoob, S., Gupta, A.K., Bhakat, P.B. and Bhat, V.T., 2008. Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chemical Engineering Journal, 140(1-3), pp.6-14.

DOI: 10.1016/j.cej.2007.08.029

Google Scholar

[25] Patel, G., Pal, U. and Menon, S., 2009. Removal of fluoride from aqueous solution by CaO nanoparticles. Separation Science and Technology, 44(12), pp.2806-2826.

DOI: 10.1080/01496390903014425

Google Scholar

[26] W.H.O., Guidelines for Drinking Water Quality., Geneva, (2004).

Google Scholar

[27] Ho, Y.S. and McKay, G., 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChemE, 76(4), pp.332-340.

DOI: 10.1205/095758298529696

Google Scholar

[28] Ho, Y.S., 2006. Review of second-order models for adsorption systems. Journal of hazardous materials, 136(3), pp.681-689.

DOI: 10.1016/j.jhazmat.2005.12.043

Google Scholar

[29] Chien, S.H. and Clayton, W.R., 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils 1. Soil Science Society of America Journal, 44(2), pp.265-268.

DOI: 10.2136/sssaj1980.03615995004400020013x

Google Scholar

[30] Liu, Q.S., Zheng, T., Wang, P., Jiang, J.P. and Li, N., 2010. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157(2-3), pp.348-356.

DOI: 10.1016/j.cej.2009.11.013

Google Scholar

[31] Garg, P. and Chaudhari, S., 2012, February. Adsorption of fluoride from drinking water on magnesium substituted hydroxyapatite. In Proceedings of the 2012 International Conference on Future Environment and Energy (ICFEE 2012), Singapore (pp.26-28).

Google Scholar

[32] Teutli-Sequeira, A., Solache-Ríos, M., Martínez-Miranda, V. and Linares-Hernández, I., 2014. Comparison of aluminum modified natural materials in the removal of fluoride ions. Journal of colloid and interface science, 418, pp.254-260.

DOI: 10.1016/j.jcis.2013.12.020

Google Scholar

[33] Das, N., Pattanaik, P. and Das, R., 2005. Defluoridation of drinking water using activated titanium rich bauxite. Journal of Colloid and Interface Science, 292(1), pp.1-10.

DOI: 10.1016/j.jcis.2005.06.045

Google Scholar

[34] Chen, N., Zhang, Z., Feng, C., Zhu, D., Yang, Y. and Sugiura, N., 2011. Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution. Journal of hazardous materials, 186(1), pp.863-868.

DOI: 10.1016/j.jhazmat.2010.11.083

Google Scholar

[35] Raichur, A.M. and Basu, M.J., 2001. Adsorption of fluoride onto mixed rare earth oxides. Separation and Purification Technology, 24(1-2), pp.121-127.

DOI: 10.1016/s1383-5866(00)00219-7

Google Scholar

[36] Tripathy, S.S., Bersillon, J.L. and Gopal, K., 2006. Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Separation and purification technology, 50(3), pp.310-317.

DOI: 10.1016/j.seppur.2005.11.036

Google Scholar

[37] Allen, S.J., Mckay, G. and Porter, J.F., 2004. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of colloid and interface science, 280(2), pp.322-333.

DOI: 10.1016/j.jcis.2004.08.078

Google Scholar

[38] Özkaya, B., 2006. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of hazardous materials, 129(1-3), pp.158-163.

DOI: 10.1016/j.jhazmat.2005.08.025

Google Scholar

[39] Kagne, S., Jagtap, S., Dhawade, P., Kamble, S.P., Devotta, S. and Rayalu, S.S., 2008. Hydrated cement: a promising adsorbent for the removal of fluoride from aqueous solution. Journal of hazardous materials, 154(1-3), pp.88-95.

DOI: 10.1016/j.jhazmat.2007.09.111

Google Scholar

[40] Islam, M. and Patel, R., 2011. Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chemical engineering journal, 169(1-3), pp.68-77.

DOI: 10.1016/j.cej.2011.02.054

Google Scholar