Stress Test of Cascode Switch Using SiC Static Induction Transistor

Article Preview

Abstract:

Stress tests were conducted for the cascode switch using the SiC buried gate static induction transistor (SiC-BGSIT). The stress of the reverse overshoot voltage was periodically applied to the pn junction between the gate terminal and source one in the BGSIT in the cascode with pulses of 40kHz for 202 hours. This simulates the stress which can be occurred in the channel region of the BGSIT during the turn-off and turn-on operation with a parasitic inductance in the interconnection of the cascode package. The result of the stress tests has revealed that there is no significant difference between the electrical characteristics of the BGSIT cascode sample before the stress and those after the stress. Thus, the BGSIT cascode can guarantee high reliability against the stress. The result from the drain current DLTS suggests that no deferent kind of defect is created in the channel region of the BGSIT by the stress.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

985-991

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] S. Akiyama, H. Shimizu, N. Yokoyama, T. Tamaki, S. Koido, Y. Tomizawa, T. Takahashi, and T. Kanazawa, A 69-mΩ 600-V-class hybrid JFET, Mater. Sci. Forum 740-742(2013) 925-928.

DOI: 10.4028/www.scientific.net/msf.740-742.925

Google Scholar

[2] A. Bhalla, Melvin Nava, Mike Zhu, F. Sudario, D. Sumaoang, P. Alexandrov, X. Li, and P. Losee, Ultra-high speed 7mohm, 650V SiC half-bridge module with robust short circuit capability for EV inverters, Proc. Int. Symp. Power Semiconductor Devices & ICs (2019)191-194.

DOI: 10.1109/ispsd.2019.8757666

Google Scholar

[3] K. Yano, Y. Tanaka, and M. Yamamoto, Extremely low on-resistance SiC cascode configuration using buried-gate static induction transistor, IEEE Electron Device Lett. 39, (2018)1892-1895.

DOI: 10.1109/led.2018.2878933

Google Scholar

[4] United Silicon Carbide, Inc. web site, https://unitedsic.com/cascodes/.

Google Scholar

[5] S. Martin, T. Kayiranga, Y. Shi, and H. Li, Comparative study of a 100kW PV WBG inverter using 1200V SiC MOSFET and JFET cascode devices, Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC) (2018)399-405.

DOI: 10.1109/apec.2018.8341042

Google Scholar

[6] J. Nishizawa, T. Terasaki, and J. Shibata, Field-effect transistor versus analog transistor (static induction transistor), IEEE Trans. Electron Devices, vol. ED-22 (1975)185–197.

DOI: 10.1109/t-ed.1975.18103

Google Scholar

[7] Y. Tanaka, M. Okamoto, A. Takatsuka, K. Arai, T. Yatsuo, K. Yano, and M. Kasuga, 700-V 1.0 mΩcm2 buried gate SiC-SIT (SiC-BGSIT), IEEE Electron Device Lett., 27 (2006) 908–910.

DOI: 10.1109/led.2006.884724

Google Scholar

[8] Y. Tanaka, A. Takatsuka, T. Yatsuo, K. Arai, and K. Yano, 1200 V, 35 A SiC-BGSIT with improved blocking gain of 480, Proc. 22nd Int. Symp. Power Semiconductor Devices & IC's (2010) 357–360.

Google Scholar

[9] A. Takatsuka, Y. Tanaka, K. Yano, N. Matsumoto, T. Yatsuo, and K. Arai, 3 kV normally-off 4H-SiC buried gate static induction transistors (SiC-BGSITs), Mater. Sci. Forum 778–780(2014) 899–902.

DOI: 10.4028/www.scientific.net/msf.778-780.899

Google Scholar

[10] T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, Drain current DLTS of AlGaN-GaN MIS-HEMTs, IEEE Electron Device Lett. 25(2004) 523-525.

DOI: 10.1109/led.2004.832788

Google Scholar

[11] T. Dalibor, G. Penel, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schoner, and N. Nordell, Deep defect centers in silicon carbide monitored with deep level transient spectroscopy, Phys. Stat. sol. (a)162 (1997) 199-225.

DOI: 10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0

Google Scholar

[12] K. Danno, T. Kimoto, and H. Matsunami, Midgap levels in both n- and p-type 4H-SiC epilayers investigated by deep level transient spectroscopy, Appl. Phy. Lett. 86, 122104 (2005).

DOI: 10.1063/1.1886904

Google Scholar