Physical, Corrosion and Microstructural Analysis of A356/SiC Nanocomposites Fabricated through Stir Casting Process

Article Preview

Abstract:

Porosity is one of the main difficulty to fabricate the superior quality of aluminium matrix composites (AMCs) because it effects the surface finish of the casting, mechanical properties and corrosion resistance. Therefore, porosity must be minimum as possible so that better casting can be produced with optimal properties of the composites. In this study, aluminium matrix nanocomposites (A356/SiC or AMNCs) were fabricated through two-step stir casting via mechanical alloying using ball mill. The matrix alloy (A356) was reinforced with SiC nanoparticles of 40-55 nm avarage particle size (APS). The corrosion was performed by simple immersion corrosion test method for a predefined environment (3.5% NaCl solution) and for the specified duration. The results showed that density and porosity increase with the addition of reinforcement. The corrosion resistance get reduced with the incorporation of SiC due to the increase in porosity and number of nucleation sites. The substantial correlation between the corrosion rate and the amount of SiC are depicted. Moreover, the corrosion rate decreased with the increase in exposure time which is due to the formation of passive layer. The EDS spectrum shows the presence of different constituents in the composites. The formation of the cracks, oxides, pitting corrosion, and localized corrosion are found by the SEM results. Further, SEM of the corroded surface verifies the presence and good distribution of the SiC nanoparticles in the fabricated nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1034)

Pages:

73-86

Citation:

Online since:

June 2021

Authors:

Export:

Price:

* - Corresponding Author

[1] A. Melaibari, A. Fathy, M. Mansouri, M.A. Eltaher, Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites, Journal of Alloys and Compounds. 2019; 774: 1123-1132.

DOI: 10.1016/j.jallcom.2018.10.007

Google Scholar

[2] Sajjad Arif, Tanwir Alam, Akhter H. Ansari & Mohd Bilal Naim Shaikh, Morphological characterization, statistical modelling and tribological behaviour of aluminum hybrid nanocomposites reinforced with micro-nano-silicon carbide, Journal of Asian Ceramic Societies. 2019; 7(4): 434-448.

DOI: 10.1080/21870764.2019.1665765

Google Scholar

[3] Md Tanwir Alam, Sajjad Arif, Akhter Husain Ansari and Md Naushad Alam, Optimization of wear behaviour using Taguchi and ANN of fabricated aluminium matrix nanocomposites by two-step stir casting, Mater. Res. Express. 2019; 6: 065002. https://doi.org/10.1088/2053-1591/ab0871.

DOI: 10.1088/2053-1591/ab0871

Google Scholar

[4] Md. Tanwir Alam, Akhter Husain Ansari, Sajjad Arif & Md. Naushad Alam, Mechanical properties and morphology of aluminium metal matrix nanocomposites stir cast products, Advances in Materials and Processing Technologies. 2017; 3(4): 600-615.

DOI: 10.1080/2374068x.2017.1350543

Google Scholar

[5] Pan L, Han J, Yang Z, Li X, Wang J, Li Z and LiW, Thermal fatigue crack behavior of SiCp/A356 composites prepared by stirring casting, Results in Physics. 2017; 7: 927–33.

DOI: 10.1016/j.rinp.2017.02.010

Google Scholar

[6] K.K. Alaneme, J.O. Ekperusi, S.R. Oke, Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide, Journal of King Saud University - Engineering. 2018; 30(4): 391-397.

DOI: 10.1016/j.jksues.2016.08.001

Google Scholar

[7] M. Sambathkumar, P. Navaneethakrishnan, K. Ponappa and K.S.K. Sasikumar, Mechanical and Corrosion Behavior of Al7075 (Hybrid) Metal Matrix Composites by Two Step Stir Casting Process, Latin American Journal of Solids and Structures.2017; 14: 243-255.

DOI: 10.1590/1679-78253132

Google Scholar

[8] S.M. Shirazi, F. Akhlaghi, Dong-yang Li, Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites, Transactions of Nonferrous Metals Society of China.2016; 26: 1801-1808.

DOI: 10.1016/s1003-6326(16)64294-2

Google Scholar

[9] C Vargel, Corrosion of Aluminium, second edition. 2020; Elsevier.

Google Scholar

[10] Y.K. Singla, R. Chhibber, Avdesh, S. Goyal, V. Sharma, Influence of single and dual particle reinforcements on the corrosion behavior of aluminum alloy based composites, Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications. 2016; 232(6):.

DOI: 10.1177/1464420716638111

Google Scholar

[11] M.O. Bodunrina, K.K. Alanemea, L.H. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, Journal of materials research technology. 2015; 4(4): 434–445.

DOI: 10.1016/j.jmrt.2015.05.003

Google Scholar

[12] H.M. Zakaria, Microstructural and corrosion behavior of Al/SiC metal matrix composites, Ain Shams Engineering Journal.2014; 5(3): 831-838.

DOI: 10.1016/j.asej.2014.03.003

Google Scholar

[13] Damei Lvab Junfei Ouab Mingshan Xueab Fajun Wangab, Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution, Applied Surface Science. 2015; 333: 163-169. https://doi.org/10.1016/j.apsusc.2015.02.012.

DOI: 10.1016/j.apsusc.2015.02.012

Google Scholar

[14] Junfei Ouab Mingzhi Liuab Wen Liab Fajun Wangab Mingshan Xueab Changquan Liab, Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions , Applied Surface Science. 2012; 258(10): 4724-4728. https://doi.org/10.1016/j.apsusc.2012.01.066.

DOI: 10.1016/j.apsusc.2012.01.066

Google Scholar

[15] J.Li S.J.Li Y.L. Hao R.Yang, Electrochemical characterization of nanostructured Ti–24Nb–4Zr–8Sn alloy in 3.5% NaCl solution, International Journal of Hydrogen Energy. 2014; 39(30): 17452-17459. https://doi.org/10.1016/j.ijhydene.2014.01.144.

DOI: 10.1016/j.ijhydene.2014.01.144

Google Scholar

[16] H. Kala, K.K.S. Mer, S. Kumar, A Review on Mechanical and Tribological Behaviors of Stir Cast Aluminum Matrix Composites, 3rd International Conference on Materials Processing and Characterization (ICMPC 2014), Procedia Materials Science. 2014; 6: 1951–(1960).

DOI: 10.1016/j.mspro.2014.07.229

Google Scholar

[17] K.K. Alanemea, T.M. Adewaleb, P.A. Olubambic, Corrosion and wear behaviour of Al–Mg–Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide, Journal of materials research technology. 2014; 3(1): 9–16.

DOI: 10.1016/j.jmrt.2013.10.008

Google Scholar

[18] A. Turnbull, Review of corrosion studies on aluminium metal matrix composites, Corrosion Engineering Science and Technology. 1992; 27: 27–35.

DOI: 10.1179/000705992798268864

Google Scholar

[19] Prashant Kumar Bhargav, K.S.R. Murthy, Kamalpreet Kaur, M.S. Goyat, Jitendra K. Pandey, Santosh Dubey, Sudesh Sharma & Charu Pant, Influence of Al and Al-Cu dual doping on structural, optical, wetting and anti-fungal properties of ZnO nanoparticles, Materials Research Innovations, 2019;.

DOI: 10.1080/14328917.2019.1686560

Google Scholar

[20] Roland Tolulope Loto and Philip Babalola, Corrosion polarization behavior and microstructural analysis of AA1070 aluminium silicon carbide matrix composites in acid chloride concentrations, Cogent Engineering. 2017; 4: 1422229. https://doi.org/10.1080/23311916.2017.1422229.

DOI: 10.1080/23311916.2017.1422229

Google Scholar

[21] A.TURNBULL, Review of corrosion studies on aluminium metal matrix Composites, British Corrosion Journal. 1992; 27(1): 27-35.

DOI: 10.1179/000705992798268864

Google Scholar

[22] Roland Tolulope Loto and Phillip Babalola, Analysis of SiC grain size variation and NaCl concentration on the corrosion susceptibility of AA1070 aluminium matrix composites, Cogent Engineering. 2018; 5: 1473002. https://doi.org/10.1080/23311916.2018.1473002.

DOI: 10.1080/23311916.2018.1473002

Google Scholar

[23] M. Almomani, A. M. Hassan, T. Qasim and A. Ghaithan, Effect of process parameters on corrosion rate of friction stir welded aluminium SiC–Gr hybrid composites, Corrosion Engineering, Science and Technology. 2013; 48(5): 346-353.

DOI: 10.1179/1743278213y.0000000083

Google Scholar

[24] A. Pardo, M. C. Merino, S. Merino, M. D. Lo´pez, F. Viejo and M. Carboneras, Influence of SiCp content and matrix composition on corrosion resistance in cast aluminium matrix composites in salt fog, Corrosion Engineering, Science and Technology. 2004; 39 (1): 83-88. DOI 10.1179/147842204225016912.

DOI: 10.1179/147842204225016912

Google Scholar

[25] Srinivas V, Jayaraj A, Venkataramana V.S.N, Ravisankar H. & Moorthy Ch. V. K. N. S. N, Mechanical, corrosion and cavitation erosion properties of LM 9 grade aluminium – multi-walled carbon nanotubes composites, Australian Journal of Mechanical Engineering. 2020;.

DOI: 10.1080/14484846.2020.1784557

Google Scholar

[26] B. M. Girish, H. R. Vitala and B. M. Satish, Effect of nitriding on corrosion behaviour of graphite reinforced aluminium alloy composites, Corrosion Engineering, Science and Technology. 2013; 48(1): 51-54. DOI 10.1179/1743278212Y.0000000038.

DOI: 10.1179/1743278212y.0000000038

Google Scholar

[27] C. Y. Wang, G. W. Wen and G. H. Wu, Improving corrosion resistance of aluminium metal matrix composites using cerium sealed electroless Ni–P coatings, Corrosion Engineering, Science and Technology. 2011; 46(4): 471-476. DOI 10.1179/147842209X12489567719509.

DOI: 10.1179/147842209x12489567719509

Google Scholar

[28] Dora Siva Prasad, ChintadaShob, Nallu Ramanaiah, Investigations on mechanical properties of aluminum hybrid composites, Journal of Materials Research and Technology. 2014; 3(1): 79-85, https://doi.org/10.1016/j.jmrt.2013.11.002.

DOI: 10.1016/j.jmrt.2013.11.002

Google Scholar

[29] Aravindan S, Rao P V and Ponappa K, Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process,, Journal of Magnesium and Alloys. 2015; 3: 52-62.

DOI: 10.1016/j.jma.2014.12.008

Google Scholar

[30] K.S. See and T.A. Dean, The effects of the disposition of SiC particles on the forgeability and mechanical properties of co-sprayed aluminium-based MMCs, Journal of Materials Processing Technology. 1997; 69: 58-67.

DOI: 10.1016/s0924-0136(96)00040-4

Google Scholar

[31] E.A.M. Shalaby, A.Y. Churyumov, D.H.A. Besisa, A. Daoud, M.T. Abou El-Khair, A Comparative Study of Thermal Conductivity and Tribological Behavior of Squeeze Cast A359/AlN and A359/SiC Composites, Journal of Materials Engineering and Performance. 2017; 26(7): 3079—3089.

DOI: 10.1007/s11665-017-2734-3

Google Scholar

[32] Shalaby E A M, Churyumov A Y, Besisa D H A, Daoud A and Abou El-Khair M T, 2017, A Comparative Study of Thermal Conductivity and Tribological Behavior of Squeeze Cast A359/AlN and A359/SiC Composites,, Journal of Materials Engineering and Performance. 2017; 26(7): 3079—3089.

DOI: 10.1007/s11665-017-2734-3

Google Scholar

[33] Tahamtan S, Emamy M, Halvaee A., Effects of reinforcing particle size and interface bonding strength on tensile properties and fracture behavior of Al-A206/alumina micro/nanocomposites, Journal of Composite Materials. 2014; 48(27): 3331–3346.

DOI: 10.1177/0021998313509860

Google Scholar

[34] Pinto GM, Nayak J and Shetty AN., Corrosion behaviour of 6061 Al - 15 vol. Pct. SiC composite and its base alloy in a mixture of 1:1 hydrochloric and sulphuric acid medium, International Journal of Electrochemical Science. 2009; 4: 1452–1468.

DOI: 10.1016/j.matchemphys.2010.10.006

Google Scholar

[35] M.S.N. Bhat, M.K Surappa, H.V. Sudhaker Nayak, Corrosion behaviour of silicon carbide particle reinforced 6061/Al alloy composites, Journal of Material Science. 1991; 26: 4991–4996.

DOI: 10.1007/bf00549882

Google Scholar

[36] B. Bobić, S. Mitrovic, M. Babic, I. Bobić, Corrosion of metal matrix composites with aluminium alloy substrate, Tribology in Industry. 2010; 32(1): 3–11.

Google Scholar

[37] K.S.R. Raju, P.R.M. Raju, S. Rajesh, V.R. Raju, P. Ghosal, An experimental and micrographical investigation on aluminium nano metal matrix composites, Journal of Composite Materials. 2016; 50(26): 1-15.

DOI: 10.1177/0021998315623624

Google Scholar

[38] P. Sharma, S. Sharma, D. Khanduja, Production and some properties of Si3N4 reinforced aluminium alloy composites, Journal of Asian Ceramic Societies. 2015; 3: 352–359.

DOI: 10.1016/j.jascer.2015.07.002

Google Scholar