Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer

Article Preview

Abstract:

Aerosol deposition method (ADM) for shock-consolidation of fine ceramics powder to form dense and hard layers is reported. Submicron ceramic particles were accelerated by gas flow in the nozzle up to velocity of several hundred m/s. During interaction with substrate, these particles formed thick (10 ~ 100 µm), dense, uniform and hard ceramics layers. Depositions were fulfilled at room temperature. Every layer has polycrystalline structure with nano-meter order scale.􀀂 The results of fabrications, microstructure, mechanical and electrical properties of oxides (α-Al2O3; Pb(Zr0.52,Ti0.48)O3 etc.) and non-oxides materials are presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 449-452)

Pages:

43-48

Citation:

Online since:

March 2004

Authors:

Export:

Price:

[1] J. Akedo and M. Lebedev: Recent Res. Develp. Mat. Sci., 2 (Research Signpost, India 2001) p.51. Si mirror PZT� thick layer for monmorpgh actuator Journal Title and Volume Number (to be inserted by the publisher).

Google Scholar

[2] J. Akedo and M. Kiyohara : J. Soc. Powder Tech., Jpn., Vol. 40 (3), (2003) p.192.

Google Scholar

[3] J. Akedo and M. Lebedev : Jpn. J. Appl. Phys., Vol. 38, (1999) p.5397.

Google Scholar

[4] J. Akedo and M. Lebedev: Jpn. J. Appl. Phys., Vol. 40, (2001) p.5528.

Google Scholar

[5] J. Akedo and M. Lebedev : Jpn. J. Appl. Phys., Vol. 41, (2002) p.6980.

Google Scholar

[6] J. Akedo, M. Lebedev, A. Iwata, H. Ogiso and S. Nakano : Proc. MRS, (in printing).

Google Scholar

[7] M. Levedev, J. Akedo, K. Mori and T. Eiju : J. Vac. Sci. & Tech. A, Vol. 18, (2000) p.563.

Google Scholar

[8] T. J. Holmquist, G. R. Johnson, D. E. Grady, C. M. Lopatin and E. S. Hertel : Proc. 15th Int. Symp. On Ballistics, TB31, Jerusalem, Israel, 21-24 May, (1995) p.237.

Google Scholar

[9] T. Vreeland, Jr., K. L. Montilla and A. H. Mutz : J. Appl. Phys., Vol. 82, (1997) p.2840.

Google Scholar

[10] R.C. Dykhuizen et al.: J. of Thermal Spray Technology, Vol. 8, (1999) p.559.

Google Scholar

[11] T. Ide, Y. Mori, I. Konda, N. Ikawa and H. Yagi, J. Jpn. Soc. Prec. Eng. Vol. 57, (1991) p.143.

Google Scholar

[12] Rao, N. et al., J. Aerosol Sci., Vol. 29, (1998) p.707.

Google Scholar

[13] C. Hayashi, S. Kashu, M. Oda and F. Naruse, Mater. Sci. Eng. A, Vol. 163, (1993) p.157.

Google Scholar

[14] E. Barborini, P. Piseri, A. Podesta and P. Milani : Appl. Phys. Lett., Vol. 77, (2000) p.1059.

DOI: 10.1063/1.1289040

Google Scholar

[15] P. Muralt et al.: Sens. & Actuators A, Vol. 48, (1995) p.157.

Google Scholar

[16] S. Akamina et al.: Sens. & Actuators A, Vol. 21-23, (1990) p.964.

Google Scholar

[17] T. Massood, ed., MICROACTUATORS, (Kluwer Academic Publishers, 1998).

Google Scholar

[18] A. Manz, N. Graber and H.M. Widmer, Sens. & Actuators B, Vol. 1, (1990) p.244. ; P. Bergveld, Proc. Micro Total Analysis Systems Workshop µ-TAS’94, (1994) p.1.

Google Scholar

[19] R.B. Evans, J.S. Griesbach and W.C. Messner, IEEE Trans. Mag., Vol. 35-2, (1999) p.977.

Google Scholar

[20] N. Asai et al.: Proc. of IEEE Micro Electro Mech. Systems, Kyoto, Japan (2003) p.247.

Google Scholar