Intergranular Corrosion and Stress Corrosion Cracking of Sensitised AA5182

Article Preview

Abstract:

AA5182 (Al-4.5 wt% Mg) can become susceptible to intergranular corrosion (IGC) with time at moderately elevated service temperatures owing to precipitation of Mg-rich β-phase at grain boundaries, which can lead to stress corrosion cracking (SCC). The IGC and SCC susceptibility of AA5182 was found to depend strongly on sensitisation heat treatments. AFM and TEM studies demonstrated that the degree of precipitation and thus susceptibility to attack for a boundary can be related to its crystallographic misorientation. Low angle boundaries (<20°) are most resistant to attack as they do not show β-phase precipitation. However, higher angle boundaries show highly variable precipitation and corrosion susceptibility: critical factors are the grain boundary plane and precipitate/matrix crystallographic relationship.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Pages:

641-646

Citation:

Online since:

July 2006

Export:

Price:

[1] E. H. Dix, W. A. Anderson, and M. B. Shumaker: Corrosion, Vol. 15 (1959), p. 55t.

Google Scholar

[2] D. O. Sprowls and R. H. Brown, Fundamental Aspects of Stress Corrosion Cracking (R. W. Staehle, A. J. Forty, and D. van Rooyen, eds., National Association of Corrosion Engineers, Houston, TX, 1969), p.466.

Google Scholar

[3] M. O. Speidel and M. V. Hyatt, Advances in Corrosion Science and Technology (Vol. 2 M. G. Fontana and R. W. Staehle, eds., Plenum Press, New York, NY, 1972), p.115.

Google Scholar

[4] J. C. Chang and T. H. Chuang: Metall. Mater. Trans. A, Vol. 30A (1999), p.3191.

Google Scholar

[5] R. Dif and M. Reboul, EUROCORR '97, Trondheim, Norway, (Vol. II, Norwegian University of Science and Technology, 1997), p.259.

Google Scholar

[6] J. L. Searles, P. I. Gouma, and R. G. Buchheit: Metall. Mater. Trans. A, Vol. 32A (2001), p.2859.

Google Scholar

[7] R. H. Jones, D. R. Baer, M. J. Danielson, and J. S. Vetrano: Metall. Mater. Trans. A, Vol. 32A (2001), p.1699.

Google Scholar

[8] R. H. Jones, J. S. Vetrano, and C. F. Windisch, Jr: Corrosion, Vol. 60 (2004), p.1144.

Google Scholar

[9] P. N. T. Unwin and R. B. Nicholson: Acta Metall., Vol. 17 (1969), p.1379.

Google Scholar

[10] L. I. Kaigorodova: Mater. Sci. Forum, Vol. 294-296 (1999), p.477.

Google Scholar

[11] Y. Yuan, Crystallographic Effects in Sensitisation of an Aluminium-Magnesium Alloy, MPhil, University of Birmingham, Metallurgy and Materials, (2001).

Google Scholar

[12] D. Vaughan: Acta Metall., Vol. 16 (1968), p.563.

Google Scholar

[13] D. Vaughan: Acta Metall., Vol. 18 (1970), p.183.

Google Scholar

[14] J. K. Park and A. J. Ardell: Acta Metall., Vol. 34 (1986), p.2399.

Google Scholar

[15] E. P. Butler and P. R. Swann: Acta Metall., Vol. 24 (1976), p.343.

Google Scholar

[16] A. Garg and J. M. Howe: Acta Metall. Mater., Vol. 40 (1992), p.2451.

Google Scholar

[17] S. R. Ortner and V. Randle: Scripta Metall., Vol. 23 (1989), p. (1903).

Google Scholar

[18] S. H. Kim, U. Erb, K. T. Aust, and G. Palumbo: Scripta Mater., Vol. 44 (2001), p.835.

Google Scholar

[19] Y. Yuan, Localised Corrosion and Stress Corrosion Cracking of Aluminium-Magnesium Alloys, PhD, University of Birmingham, Metallurgy and Materials, (2005).

Google Scholar