Genetic Alloy Design of Ultra High Strength Stainless Steels: From Thermodynamics to Quantum Mechanics

Article Preview

Abstract:

The design of novel ultra high strength steels for aerospace applications is subjected to stringent requirements to ensure their performance. Such requirements include the ability to withstand high loads in corrosive environments subjected to temperature variations and cyclic loading. Achieving the desired performance demands microstructural control at various scales; e.g. fine lath martensite is desired in combination with nanoprecipitate networks at specified volume fractions, and controlled concentrations of alloying elements to prevent alloy embrittlement. The design for a specified microstructure cannot be separated from the processing route required for its fabrication. Alloys displaying exceptional properties are subjected to complex interactions between microstructure and processing requirements, which can be described in terms of evolutionary principles. The present work shows how genetic alloy design principles have been utilised for designing stainless steels displaying strength exceeding that of commercial counterparts. Such designed alloys become feasible for fabrication by tailoring their microstructure employing thermodynamic and kinetic principles, while fracture toughness properties can be controlled via performing quantum mechanical cohesion energy computations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

3473-3478

Citation:

Online since:

January 2010

Export:

Price:

[1] W. Xu, P. E. J. Rivera-Díaz-del-Castillo, S. van der Zwaag: Computational Materials Science, Doi: 10. 1016/j. commatsci. 2008. 11. 006 (2008).

Google Scholar

[2] W. Xu, P. E. J. Rivera-Díaz-del-Castillo, S. van der Zwaag: Computational Materials Science, 44 (2008), p.678.

DOI: 10.1016/j.commatsci.2008.05.003

Google Scholar

[3] W. Xu, P. E. J. Rivera-Díaz-del-Castillo, S. van der Zwaag: Philosophical Magazine, 88 (2008), p.1825.

DOI: 10.1080/14786430802322180

Google Scholar

[4] A. F. Padilha, P. R. Rios: ISIJ International 42 (2002), p.325.

Google Scholar

[5] H. Shaikh, H. S. Khatak, S. K. Seshadri, J. B. Gnanamoorthy, P. Rodriguez: Metallurgical and Materials Transactions A 26 (1995), p.1859.

Google Scholar

[6] H. R. H. Bajguirani, C. Servant, G. Cizeron: Acta Metallurgica et Materialia: 41 (1993), p.1613.

DOI: 10.1016/0956-7151(93)90270-3

Google Scholar

[7] K. Stiller, M. Hättestrand, F. Danoix: Acta Materialia 46 (1998), p.6063.

Google Scholar

[8] G. B. Olson: Science 277 (1997), p.1237.

Google Scholar

[9] S. Hautakangas, H. Schut, N.H. van Dijk, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag: Scripta Materialia, 58 (2008), p.719.

DOI: 10.1016/j.scriptamat.2007.11.039

Google Scholar