High Temperature Silicon Carbide CMOS Integrated Circuits

Article Preview

Abstract:

The wide band-gap of Silicon Carbide (SiC) makes it a material suitable for high temperature integrated circuits [1], potentially operating up to and beyond 450°C. This paper describes the development of a 15V SiC CMOS technology developed to operate at high temperatures, n and p-channel transistor and preliminary circuit performance over temperature achieved in this technology.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 679-680)

Pages:

726-729

Citation:

Online since:

March 2011

Export:

Price:

[1] Zetterling C-M, Process Technology for Silicon Carbide Devices, IEE, London (2002), p.6.

Google Scholar

[2] S. Ryu, K.T. Kornegay, J.A. Cooper and M.R. Melloch, IEEE Electron Device Letters, 18, 194 (1997).

Google Scholar

[3] S. Ryu, K.T. Kornegay, J.A. Cooper and M.R. Melloch, IEEE Trans. Electron Dev., vol 45, no1, 45-53, (1998).

Google Scholar

[4] B. A Hull, S. Ryu, H. Fatima, J. Richmond, J.W. Palmour and J. Scofield, MRS Symp. Proc. Vol 911, MRS, (2006).

DOI: 10.1557/proc-0911-b13-02

Google Scholar

[5] V. Tilak, C. Chen, P. Losee, E. Andarawis and Z. Stum, Proceedings of High Temperature Electronics (HiTEC), IMAPS (2010).

Google Scholar

[6] M. Le-Huu, F.F. Schrey, M. Grieb, H. Schmitt, V. Haublein, A.J. Bauer, H. Ryssel, L. Frey, Materials Science Forum, 645-648, p.1143 (2010).

DOI: 10.4028/www.scientific.net/msf.645-648.1143

Google Scholar

[7] C-M. Zetterling, L. Lanni, M-H. Weng, M. Ostling, SiC Integrated Circuits for High Temperature Applications, SiC Power Electronic Applications Seminar, Stockholm, (2010).

Google Scholar