Composition-Dependent Basics of Smart Heusler Materials from First- Principles Calculations

Article Preview

Abstract:

The structural and magnetic order are the decisive elements which vastly determine the properties of smart ternary intermetallics such as X2YZ Heusler alloys. Here, X and Y are transition metal elements and Z is an element from the III-V group. In order to give a precise prescription of the possibilities to optimize the magnetic shape memory and magnetocaloric effects of these alloys, we use density functional theory calculations. In particular, we outline how one may find new intermetallics which show higher Curie and martensite transformation temperatures when compared with the prototypical magnetic shape-memory alloy Ni2MnGa. Higher operation temperatures are needed for technological applications at elevated temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-29

Citation:

Online since:

May 2011

Export:

Price:

[1] 7th European Symposium on Martensitc Transformations, edited by M. Acet, G. Eggeler, P. Entel, K. Hackl, G. Kostorz, W. Theisen, E. Wassermann, and S. Zaefferer, Mater. Sci. Eng. A 481-482 (2008).

Google Scholar

[2] Magnetism and Structure in Functional Materials, edited by P. Planes, L. Mañosa, and A. Saxena, Springer Series in Materials Science, vol. 79 (Springer, Berlin, 2005).

DOI: 10.1007/3-540-31631-0

Google Scholar

[3] Advances in Shape Memory Materials – Ferromagnetic Shape Memory Alloys, edited by V. A. Chernenko, Mater. Sci. Forum, Vol. 583 (2008).

Google Scholar

[4] Ferromagnetic Shape Memory Alloys II, edited by V. A. Chernenko and J. M. Barandiaran, Mater. Sci. Forum, Vol. 635 (2010).

Google Scholar

[5] Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach, New York, 2000).

Google Scholar

[6] Smart Mater. Structures 14, Number 5 (2005): Special issue: Shape Memory and Related Technologies.

Google Scholar

[7] O. Söderberg, A. Sozinov, Y. Ge, S. -P. Hannula and V. K. Lindroos, Giant magnetostrictive materials, in Handbook of Magnetic Materials, edited by K. H. J. Buschow, Vo. 16 (Elsevier, Amsterdam, 2006), pp.1-39.

DOI: 10.1016/s1567-2719(05)16001-6

Google Scholar

[8] R. C. O'Handley and S. M. Allen, Shape memory alloys, magnetically activated ferromagnetic shape-memory materials, in Encyclopedia of Smart Materials, edited by M. Schwartz (Wiley, New York, 2001), pp.936-951.

DOI: 10.1002/0471216275.esm072

Google Scholar

[9] A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications, IOP Series in Condensed Matter Physics, edited by J. M. D. Coey, D. R. Tilley and D. R. Vij (IOP, Bristol, 2003).

Google Scholar

[10] A. Planes, L. Mañosa and M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heulser alloys, J. Phys.: Condens. Matter 21, 233201 (2009).

DOI: 10.1088/0953-8984/21/23/233201

Google Scholar

[11] N. A. de Oliveira and P. J. von Ranke, Theoretical aspects of the magnetocaloric effect, Physics Reports 489, 89 (2010).

DOI: 10.1016/j.physrep.2009.12.006

Google Scholar

[12] K. A. Gschneidner Jr., V. K. Pecharsky and A. O. Tsokol, Recent developments in magnetocaloric materials, Rep. Progr. Phys. 68, 1479 (2005).

Google Scholar

[13] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).

Google Scholar

[14] K. Ullakko, J. K. Huang, V. V. Kokorin and R. C. O'Handley. Scr. Mater. 36, 1133 (1997).

Google Scholar

[15] A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002).

Google Scholar

[16] A. N. Vasil'ev, V. D. Buchelnikov, T. Takagi, V. V. Khovailo and E. I. Estrin, Phys. –Usp. 46, 559 (2003).

Google Scholar

[17] J. Enkovaara, A. Ayuela, T. Zayak, P. Entel, L. Nordström, M. Dube, J. Jalkanen, J. Impola and R. M. Nieminen, Mater. Sci. Eng. A 378, 52 (2004).

DOI: 10.1016/j.msea.2003.10.330

Google Scholar

[18] O. Heczko, J. Magn. Magn. Mater. 290-291, 787 (2005).

Google Scholar

[19] P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper and E. F. Wassermann, J. Phys. D: Appl. Phys. 39, 865 (2006).

DOI: 10.1088/0022-3727/39/5/s13

Google Scholar

[20] M. Acet, L. Mañosa and A. Planes, Magnetic-field induced modifications in martensitic Heusler-based alloys, preprint submitted to Elsevier (2009).

Google Scholar

[21] R. C. O'Handley, J. Appl. Phys. 83, 3263 (1998).

Google Scholar

[22] V. A. L'vov, E. V. Gomonaj and V. A. Chernenko, J. Phys.: Condens. Matter 10, 4587 (1998).

Google Scholar

[23] A. G. Khachaturyan, S. M. Shapiro and S. Semenovskaza, Phys. Rev. B 43, 10832 (1991).

Google Scholar

[24] J. Pons, V. A. Chernenko, S. Santamarta and E. Cesari, Acta Mater. 48, 3027 (2000); S. Kaufmann, U. K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz and S. Fähler, Phys. Rev. Lett. 104, 145702 (2010).

DOI: 10.1103/physrevlett.104.145702

Google Scholar

[25] M. E. Gruner, P. Entel, I. Opahle and M. Richter, J. Mater. Sci. 43, 3825 (2008).

Google Scholar

[26] M. E. Gruner and P. Entel, J. Phys.: Condens. Matter 21, 293201 (2009).

Google Scholar

[27] V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet and P. Entel, Phys. Rev. B 81, 094411 (2010).

DOI: 10.1103/physrevb.81.094411

Google Scholar

[28] V. I. Zverev, A. M. Tishin and M. D. Kuz'min, J. Appl. Phys. 107, 043907 (2010).

Google Scholar

[29] A. J. Bradley and J. W. Rodgers, Proc. Royal Soc. London A 144, 340 (1934).

Google Scholar

[30] P. J. Webster and K. R. A. Ziebeck, Heusler alloys, in Landolt-Börnstein New Series Group III: Crystal and Solid State Physics - Magnetic Properties of Metals, Vol. 19C, edited by H. P. J. Wijn (Springer, Berlin, 1988), pp.75-185.

Google Scholar

[31] K. R. A. Ziebeck and K. -U. Neumann, Heusler alloys, in Landolt-Börnstein New Series Group III: Condensed Matter – Magnetic Properties of Metals, Vol. 32C, Supplement to Vol. 19, edited by H. P. J. Wijn (Springer, Berlin, 1988), pp.64-414.

Google Scholar

[32] A. R. Williams, V. L. Moruzzi and C. D. Gelatt, Jr. and J. Kübler, J. Magn. Magn. Mater. 31-34, 88 (1983).

Google Scholar

[33] I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002).

Google Scholar

[34] Half-metallic Alloys – Fundamentals and Applications, edited by I. Galanakis and P. H. Dederichs, Lecture Notes in Physics, Vol. 676 (Springer, Berlin, 2005).

DOI: 10.1007/b137760

Google Scholar

[35] R. A. de Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

Google Scholar

[36] M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein and R. A. de Groot, Rev. Mod. Phys. 80, 315 (2008).

DOI: 10.1103/revmodphys.80.315

Google Scholar

[37] P. Entel, M. E. Gruner, A. Dannenberg, M. Siewert, S. K. Nayak, H. C. Herper and V. D. Buchelnikov, Mater. Sci. Forum 635, 3 (2010).

Google Scholar

[38] M. Gilleßen and R. Dronskowski, J. Comp. Chem. 31, 612 (2008).

Google Scholar

[39] A. Dannenberg, M. E. Gruner, M. Wuttig and P. Entel, Mater. Res. Soc. Symp. Proc. 1200E, 1200-G04-03 (2010).

Google Scholar

[40] A. Dannenberg, M. Siewert, M. E. Gruner, M. Wuttig and P. Entel, Proc. EMRS 2010, Strasbourg 2010, in print.

Google Scholar

[41] G. E. Bacon and J. S. Plant, J. Phys. F: Metal Phys. 1, 524 (1971).

Google Scholar

[42] J. Thoene, S. Chadov, G. Fecher, C. Felser and J. Kübler, J. Phys. D: Appl. Phys. 42, 084013 (2009).

DOI: 10.1088/0022-3727/42/8/084013

Google Scholar

[43] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

Google Scholar

[44] K. R. A. Ziebeck and P. J. Webster, Phil. Mag. 34, 973 (1976).

Google Scholar

[45] K. Miyamoto, A. Kimure, K. Iori, K. Sakamoto, T. Xie, T. Moko, S. Qiao, M. Taniguchi and K. Tsuchiya, J. Phys.: Condens. Matter 16, S5797 (2004).

DOI: 10.1088/0953-8984/16/48/051

Google Scholar

[46] S. Wurmehl, G. H. Fecher, V. Ksenofontov, F. Casper, U. Stumm, C. Felser, H. -J. Lin and Y. Hwu, J. Appl. Phys. 99, 08J103 (2006).

DOI: 10.1063/1.2167330

Google Scholar

[47] P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K. -U. Neumann, B. Ouladdiaf and K. R. A. Ziebeck, J. Phys.: Condens. Matter 14, 10159 (2002).

DOI: 10.1088/0953-8984/14/43/313

Google Scholar

[48] P. J. Brown, A. Y. Bargawi, J. Crangle, K. -U. Neumann and K. R. A. Ziebeck, J. Phys.: Condens. Matter 11, 4715 (1999).

Google Scholar

[49] H. Allmaier, L. Chioncel, E. Arrigoni, M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 81, 054422 (2010).

Google Scholar

[50] M. B. Stearns, J. Appl. Phys. 50, 2060 (1979).

Google Scholar

[51] E. Şaşıoğlu, L. M. L. Sandratskii and P. Bruno, Phys. Rev. B 70, 024427 (2004).

Google Scholar

[52] J. Kübler, A. R. Williams and C. B. Sommers, Phys. Rev. B 28, 1745 (1983).

Google Scholar

[53] L. M. Sandratskii, Adv. Phys. 47, 1 (1998).

Google Scholar

[54] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov and V. A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).

Google Scholar

[55] H. Ebert, in Electronic Structure and Physical Properties of Solids, Lecture Notes in Physics, Vol. 535, edited by H. Dreysse (Sringer, Berlin, 1999), p.191.

Google Scholar

[56] A. R. Williams, J. Kübler and C. D. Gelat, Phys. Rev. B 19, 6094 (1979).

Google Scholar

[57] O, K. Anderson, Phys. Rev. B 12, 3060 (1975).

Google Scholar

[58] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

Google Scholar

[59] E. Şaşıoğlu, L. M. Sandratskii and P. Bruno, Phys. Rev. B 77, 064417 (2008).

Google Scholar

[60] P. W. Anderson, Phys. Rev. 124, 41 (1961).

Google Scholar

[61] T. Kasuya, Solid State Commun. 15, 1119 (1974).

Google Scholar

[62] C. E. T. Goncalves Da Silva and L. M . Falicov, J. Phys. C5, 63 (1972).

Google Scholar

[63] Zhu-Pei Shi, P. M. Levy and J. L. Fry, Phys. Rev. B 49, 15159 (1994).

Google Scholar

[64] V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner and S. K. Nayak, Phys. Rev. B 78, 184427 (2008).

Google Scholar

[65] V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, V. V. Khovaylo, A. A. Aliev, L. N. Khanov, A. B. Batdalov, P. Entel, H. Miki and T. Takagi, J. Phys. D: Appl. Phys. (2010), submitted.

DOI: 10.1088/0022-3727/44/6/064012

Google Scholar

[66] P., Entel, M. E. Gruner, A. Hucht, A. Dannenberg, M. Siewert, H. C. Herper, T. Kakeshita, T. Fukuda, V. V. Sokolovskiy and V. D. Buchelnikov, Phase diagrams of conventional and inverse functional magnetic Heusler alloys: New theoretical and experimental investigations, in Disorder and Strain-Induced Complexity in Functional Materials, edited by T. Kakeshita and T. Kuroda (Springer, Berlin, 2010), in print.

DOI: 10.1007/978-3-642-20943-7_2

Google Scholar

[67] T. Asada and K. Terakura, Phys. Rev. B 47, R15992 (1993).

Google Scholar

[68] Y. Noda and Y. Ishikawa, J. Phys. Soc. Jpn. 40, 690 (1976).

Google Scholar

[69] Y. Noda and Y. Ishikawa, J. Phys. Soc. Jpn. 40, 699 (1976).

Google Scholar

[70] K. Tajima, Y. Ishikawa, P. J. Webster, M. W. Stringfellow, D. Tocchetti and K. R. A. Ziebeck, Y. Noda and Y. Ishikawa, J. Phys. Soc. Jpn. 43, 483 (1977).

Google Scholar

[71] E. Şaşıoğlu, L. M. Sandratskii and P. Bruno, Phys. Rev. B 71, 214412 (2005).

Google Scholar

[72] E. Şaşıoğlu, L. M. Sandratskii and P. Bruno, J. Phys.: Condens. Matter 17, 995 (2005).

Google Scholar

[73] E. Şaşıoğlu, L. M. Sandratskii and P. Bruno, J. Appl. Phys. 98, 063523 (2005).

Google Scholar

[74] E. Şaşıoğlu, L. M. Sandratskii and P. Bruno, J. Magn. Magn. Mater. 290-291, 385 (2005).

Google Scholar

[75] E. Şaşıoğlu, L. M. Sandratskii, P. Bruno and I. Galanakis, Phys. Rev. B 72, 184415 (2005).

Google Scholar

[76] E. Şaşıoğlu, L. M. Sandratskii and P. Bruno, Appl. Phys. Lett. 89, 222508 (2006).

Google Scholar

[77] Y. Kurtulus, R. Dronskowski, G. D. Samolyuk and V. P. Antropov, Phys. Rev. B 71, 014425 (2005).

Google Scholar

[78] P. Buczek, A. Ernst, P. Bruno and L. M. Sandratskii, Phys. Rev. Lett. 102, 247206 (2009).

Google Scholar

[79] N. Grewe. H. J. Leder and P. Entel, Festkörperprobleme (Advances in Solid State Physics) 20, 413 (1980).

DOI: 10.1007/bfb0116751

Google Scholar

[80] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).

Google Scholar

[81] K. Schwarz, P. Mohn, P. Blaha and J. Kübler, J. Phys. F: Met. Phys. 14, 2659 (1984).

Google Scholar

[82] A. R. Williams, R. Zeller, V. L. Moruzzi and C. D. Gelatt, Jr., J. Appl. Phys. 52, 2067 (1981).

Google Scholar

[83] P. Mohn, Magnetism in the Solid State – An Introduction, Springer Series in Solid State Sciences, Vol. 134 (Springer, Berlin, 2006).

Google Scholar

[84] A. Dannenberg, M. E. Gruner, M. Wuttig and P. Entel, Proc. ESOMAT 2009, 04004 (2009); DOI: 10. 1051/esomat/200904004, EDP Sciences, (2009).

DOI: 10.1051/esomat/200904004

Google Scholar

[85] V. A. Chernenko, E. Cesari, V. V. Kokorin and I. N. Vitenko, Scripta Metall. Mater. 33, 1239 (1995).

Google Scholar

[86] V. A. Chernenko, Scripta Mater. 40, 523 (1999).

Google Scholar

[87] K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko and V. K. Lindroos, Scripta Mater. 44, 475 (2001).

DOI: 10.1016/s1359-6462(00)00610-2

Google Scholar

[88] C. Jiang, Y. Muhammad, L. Deng, W. Wu and H. Xu, Acta Mater. 52, 2779 (2004).

Google Scholar

[89] N. Lanska, O. Söderberg, A. Sozinov, Y. Ge, K. Ullakko and V. K. Lindroos, J. Appl. Phys. 95, 8074 (2004).

Google Scholar

[90] G. D. Liu, J. L. Chen, Z. H. Liu, X. F. Dai, G. H. Wu, B. Zhang and X. X. Zhang, Appl. Phys. Lett. 87, 262504 (2005).

Google Scholar

[91] V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev and A. N. Vasiliev, Phys. Rev. B 72, 224408 (2005).

Google Scholar

[92] M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. M. Allen and R. C. O'Handley, Scripta Mater. 54, 1797 (2006).

Google Scholar

[93] S. Aksoy, M. Acet, E. F. Wassermann, T. Krenke, X. Moya, L. Mañosa, A. Planes and P. Deen, Phil. Mag. 89, 2093 (2009).

DOI: 10.1080/14786430903082006

Google Scholar

[94] H. Kushida, K. Hata, T. Fukuda, T. Terai and T. Kakeshita, Scripta Mater. 60, 96 (2009).

Google Scholar

[95] A. Ayuela, J. Enkovaara, K. Ullakko and R. M. Nieminen, J. Phys.: Condens. Matter 11, 2017 (2002).

Google Scholar

[96] A. Ayuela, J. Enkovaara and R. M. Nieminen, J. Phys.: Condens. Matter 14, 5325 (2002).

Google Scholar

[97] S. R. Barman, S. Banik and A. Chakrabarti, Phys. Rev. 72, 184410 (2005).

Google Scholar

[98] S. Ö. Kart, M. Uludoğan, I. Karaman, T. Çağın, Phys. Stat. Solidi A 205, 1026 (2008).

Google Scholar

[99] J. S. Kasper and J. S. Kouvel, J. Phys. Chem. Solids 11, 231 (1959).

Google Scholar

[100] M. Hansen, Constitution of Binary Alloys (McGraw-Hill, New York, 1958), 2nd ed., p.938.

Google Scholar

[101] K. Adachi and C. M. Wayman, Metal. Trans. A 16, 1985 (1985).

Google Scholar

[102] N. A. Gokcen, J. Phase Equilibria 12, 313 (1991).

Google Scholar

[103] C. Guo and Z. Du, Intermetallics 13, 525 (2005).

Google Scholar

[104] H. Okamoto, J. Phase Equlilibria and Diffusion 28, 406 (2007).

Google Scholar

[105] M. Ye, A. Kimura, Y. Miura, M. Shirai, Y. T. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, K. Kobayashi, R. Kainuma, T. Shischido, K. Fukushima, T. Kanomata, Phys. Rev. Lett. 104, 176401 (2010).

Google Scholar

[106] G. A. Landrum and R. Dronskowski, Angew. Chem. Int. Ed. 38, 1390 (1999); P. Entel, R. Dronskowski et al., in preparation.

Google Scholar

[107] M. Siewert, M. E. Gruner, A. Dannenberg, A. Hucht, S. M. Shapiro, G, Xu, D. L. Schlagel, T. A. Lograsso and P. Entel, Phys. Rev. B 82, 064420 (2010).

Google Scholar

[108] W. Hume-Rothery, J. Inst. Met. 35, 295 (1925).

Google Scholar

[109] A. Zheludev, S. M. Shapiro, P. Wochner, A. Schwartz, M. Wall and L. E. Tanner, Phys. Rev. B 51, 11310 (1995).

Google Scholar

[110] A. Zheludev, S. M. Shapiro, P. Wochner and L. E. Tanner, Phys. Rev. B 54, 15045 (1996).

Google Scholar

[111] L. Manosa, A. Planes, J. Zarestky, T. Lograsso, D. L. Schlagel and C. Stassis, Phys. Rev. B 64, 024305 (2001).

Google Scholar

[112] Y. Lee, J. Y. Rhee and B. N. Harmon, Phys. Rev. B 66, 054424 (2002).

Google Scholar

[113] C. Bungaro, K. M. Rabe and A. Dal Corso, Phys. Rev. B 68, 134104 (2003).

Google Scholar

[114] A. T. Zayak, P. Entel, J. Enkovaara, A. Ayuela and R. M. Nieminen, Phys. Rev. B 68, 132402 (2003).

Google Scholar

[115] A. T. Zayak, P. Entel, K. M. Rabe, W. A. Adeagbo and M. Acet, Phys. Rev. B 72, 054113 (2005).

Google Scholar

[116] M. Uijttewaal, T. Hickel, J. Neugebaueer, M. E. Gruner and P. Entel, Phys. Rev. Lett. 102, 035702 (2009).

Google Scholar

[117] J. Enkovaara, O. Heczko, A. Ayuela and R. M. Nieminen, Phys. Rev. B 67, 212405 (2003).

Google Scholar

[118] O. Heczko and L. Straka, J. Magn. Magn. Mater. 272-276, 2045 (2004).

Google Scholar

[119] X. Jin, M. Marioni, D. Bono, S. M. Allen and R. C. O'Handley, J. Appl. Phys. 91, 8222 (2002).

Google Scholar

[120] J. Enkovaara, A. Ayuela, L. Nordström and R. M. Nieminen, Phys. Rev. B 65, 134422 (2002).

Google Scholar

[121] A. Sozinov, A. A. Likhachev and K. Ullakko, IEEE Trans. Magn. 38, 2814 (2002).

Google Scholar

[122] A. Dannenberg, M. E. Gruner, M. Wuttig and P. Entel, PRB (2010), submitted.

Google Scholar

[123] R. Arróyave, A. Junkaew, A. Chivukula, S. Bajaj, C. -Y. Yao and A. Garray, Acta Mater. 58, 5220 (2010).

Google Scholar

[124] P. Entel, M. Siewert, A. Dannenberg, M. E. Gruner and M. Wuttig, Mater. Res. Soc. Symp. Proc. 1200E, 1200-G04-01 (2010).

Google Scholar

[125] F. Albertini, L. Morellon, P. A. Algarabel, M. R. Ibarra, L. Pareti, Z. Arnold and G. Calestani, J. Appl. Phys. 89, 5614 (2001).

DOI: 10.1063/1.1350630

Google Scholar

[126] R. Tickle and R. D. James, J. Magn. Magn. Mater. 195, 627 (1999).

Google Scholar

[127] O. Heczko, K. Jurek and K. Ullakko, J. Magn. Magn. Mater. 226-230, 996 (2001).

Google Scholar

[128] S. Wirth, A. Leithe-Jasper, A. N. Vasil'ev and J. M. D. Coey, J. Magn. Magn. Mater. 167, L7 (1997).

Google Scholar

[129] H. C. Herper and P. Entel, MSE 2010, Darmstadt, Germany, August 24-28.

Google Scholar

[130] R. P. Bajpai, M. Ono, Y. Ohno and T. Toya, Phys. Rev. B 12, 2194 (1975).

Google Scholar

[131] G. C. Abell, Metall. Trans. 19A, 177 (1988).

Google Scholar

[132] P. Norman, Aust. J. Phys. 46, 689 (1993).

Google Scholar

[133] A. Y. Liu, A. A. Quong, J. K. Freericks, E. J. Nicol and E. C. Jones, Phys. Rev. B 59, 4028 (1999).

Google Scholar

[134] H. S. Park, O. -H. Kwon, J. S. Baskin and B. Barwick, Nano Lett. 9, 3954 (2009).

Google Scholar