Volume Change Associated to Carbon Partitioning from Martensite to Austenite

Article Preview

Abstract:

Annealing of martensite/austenite microstructures leads to the partitioning of carbon from martensite to austenite until the chemical potential of carbon equilibrates in both phases. This work calculates the volume change associated with this phenomenon using theoretical models for the carbon partitioning from martensite to austenite. Calculations are compared with experimentally determined volume changes. This comparison reveals that in the case of steels with higher contents of austenite-stabilizing elements, reported volume changes are satisfactory predicted assuming a low mobilily martensite/austenite interface. In the case of a steel with lower additions of austenite-stabilizing elements, experimentally measured expansions are considerably larger than predicted ones. The large measured volume expansions probably reflect the decomposition of the austenite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2290-2295

Citation:

Online since:

January 2012

Export:

Price:

[1] J.G. Speer, A.M. Streicher, D.K. Matlock, F.C. Rizzo and G. Krauss, in: Austenite Formation and Decomp., ed. by E. B Damm and M. Merwin, Warrendale, PA: TMS/ISS (2003) p.505.

Google Scholar

[2] J.G. Speer, F.C. Rizzo, D.K. Matlock, D.V. Edmonds: Mater. Res. Vol. 8 (2005), p.417.

Google Scholar

[3] J.G. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth: Acta Mater. Vol. 51 (2003), p.2611.

Google Scholar

[4] J.G. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth: Scr. Mater. Vol. 52 (2005), p.83.

Google Scholar

[5] M. Hillert and J. Ågren: Scripta Mater. Vol. 50 (2004), p.697.

Google Scholar

[6] M. Hillert and J. Ågren: Scripta Mater. Vol. 52 (2005), p.87.

Google Scholar

[7] N. Zhong, X. Wang, Y. Rong and L. Wang: J. Mater. Sci. Technol. Vol. 22 (2006), p.751.

Google Scholar

[8] H.Y. Li, X.W. Lu, W.J. Li and X.J. Jin: Metall. Mater. Trans. A, Vol. 41A (2010), p.1284.

Google Scholar

[9] D.H. Kim, J.G. Speer, H.S. Kim and B.C. De Cooman: Metall. Mater. Trans. A Vol. 40A (2008), p. (2048).

Google Scholar

[10] M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov and J. Sietsma: Mater. Sci. Eng. A Vol. 527 (2010), p.6429.

Google Scholar

[11] E. De Moor, S. Lacroix, L. Samek, J. Penning and J.G. Speer, in: The 3rd Int. Conf. on AdvancedStructural Steels, Gyeongju, Korea (2006).

Google Scholar

[12] S.J. Kim, H.S. Kim, B.C. De Cooman, in: Mater. Sci. Technol (MS&T), Detroit (2007) p.73.

Google Scholar

[13] H.K.D.H. Bhadeshia : J. de Physique C4 (1982), p. C4-443.

Google Scholar

[14] L. Cheng, C.M. Brakman, B.M. Korevaar and E.J. Mittemeijer: Metall. Trans. A Vol. 19A (1988), p.2415.

Google Scholar

[15] J.G. Speer, R.E. Hackenberg and B.C. De Cooman, D.K. Matlock: Philos. Mag. Lett. Vol. 87 (2007) p.379.

Google Scholar

[16] M.J. Santofimia, J.G. Speer, A.J. Clarke, L. Zhao and J. Sietsma: Acta Mater. Vol. 57 (2009) p.4548.

Google Scholar

[17] M.J. Santofimia, L. Zhao, J. Sietsma: Scripta Mater. Vol. 59 (2008) p.159.

Google Scholar

[18] J. Ågren: Phys. Chem. Solids Vol. 43 (1982), p.421.

Google Scholar

[19] J. Ågren: Scripta Metall. Vol. 20 (1986), p.1507.

Google Scholar

[20] A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmond and M.J. Santofimia: Scripta Mater. Vol. 61 (2009) p.149.

Google Scholar

[21] L. Cheng, A. Bottger, Th.H. de Keijser and E.J. Mittemeijer: Scripat Metall. Mater. Vol. 24 (1990), p.509.

Google Scholar

[22] C. Garcia de Andres, F.G. Caballero, C. Capdevila and L.F. Alvarez: Mater. Charact. Vol. 48 (2002), p.101.

Google Scholar

[23] M.J. Santofimia, L. Zhao and J. Sietsma: Submitted work.

Google Scholar

[24] S.M.C. van Bohemem, M.J. Santofimia and J. Sietsma: Scripta Mater. Vol. 58 (2008) p.488.

Google Scholar