The Influence of Carbon Doping on TiO2 Nanoparticle Size, Surface Area, Anatase to Rutile Phase Transformation and Photocatalytic Activity

Article Preview

Abstract:

Visible light-sensitive carbon doped titanium dioxide nanoparticles (C-TiO2) were prepared by a sol-gel method. The carbon dopant was obtained from glucose. The dopant level incorporated into the TiO2 lattice structure was varied by using different concentrations of the carbon source solution. The nanoparticles were characterized by X-ray diffraction (XRD), BET Surface area, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Scanning X-ray photoelectron spectroscopy (SXPS) and Diffuse reflectance spectroscopy (DRS). The presence of carbon in the TiO2 lattice was determined by SXPS. The DRS results revealed that carbon doping reduced the band gap of TiO2. Doping was also found to cause a reduction in the particle size of the TiO2 nanoparticles and enhance anatase to rutile phase transformation. The photocatalytic activities of the prepared samples were evaluated by the photocatalytic degradation of methyl orange. The carbon doped TiO2 showed a higher photocatalytic activity than degussa P25 and undoped TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-63

Citation:

Online since:

February 2012

Export:

Price:

[1] Y. Park, W. Kim, H. Park, T. Tichikawa, T. Majima, W. Choi, Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity, Applied Catalysis B: Environmental 91 (2009) 355–361.

DOI: 10.1016/j.apcatb.2009.06.001

Google Scholar

[2] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1–21.

DOI: 10.1016/s1389-5567(00)00002-2

Google Scholar

[3] R. Blossey, Self-cleaning surfaces-virtual realities, Nature Materials. 2 (2003) 301-306.

DOI: 10.1038/nmat856

Google Scholar

[4] X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde, Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping, Journal of Catalysis 260 (2008) 128-133.

DOI: 10.1016/j.jcat.2008.09.016

Google Scholar

[5] K. Y. Jung, S. B. Park, Son-Ki Ihm, Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size, Applied Catalysis A 224 (2002) 229-237.

DOI: 10.1016/s0926-860x(01)00784-0

Google Scholar

[6] T. Ochiai, K. Nakata, T. Murakami, A. Fujishima, Y. Yao, D. A. Tryk, Y. Kubota, Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst, Water research 44 (2010).

DOI: 10.1016/j.watres.2009.09.060

Google Scholar

[7] S. N. Frank and A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, Journal of Physical Chemistry 81 (1977) 1484-1488.

DOI: 10.1021/j100530a011

Google Scholar

[8] D. H. Kim, D. K. Choi, S. J. Kim, K. S. Lee, The effect of phase type on photocatalytic activity in transition metal doped TiO2 nanoparticles, Catalysis Communications 9 (2008) 654–657.

DOI: 10.1016/j.catcom.2007.07.017

Google Scholar

[9] N. Keller, G. Rebmann, E. Barraud, O. Zahraa, V. Keller, Macroscopic carbon nanofibres for use as photocatalyst support, Catalysis today 101 (2005) 323-329.

DOI: 10.1016/j.cattod.2005.03.021

Google Scholar

[10] E. P. Reddy, L. Davydov, P. Smirniotis, TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support, Applied Catalysis B: Environmental 42 (2003) 1–11.

DOI: 10.1016/s0926-3373(02)00192-3

Google Scholar

[11] Y. Chen, K. Wang, L. Lou, Photodegradation of dye pollutants on silica gel supportedTiO2 particles under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry 163 (2004) 281–287.

DOI: 10.1016/j.jphotochem.2003.12.012

Google Scholar

[12] Chung Leng Wong, Yong Nian Tan, Abdul Rahman Mohamed. A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. Environmental Management 2011.   21450395.

Google Scholar

[13] H. G. Yu, J. G. Yu, B. Cheng, and J. Lin, Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites, Journal of Hazardous Materials, vol. 147, no. 1-2, p.581–587, (2007).

DOI: 10.1016/j.jhazmat.2007.01.054

Google Scholar

[14] P. Roy, S. Berger, and P. Schmuki. Synthesis and Applications, Angewandte Chemie International Edition, 50 (2011).

Google Scholar

[15] T. Suprabha.; Haizel G. Roy.; Jesty Thomas.; K. Praveen Kumar.; Suresh Mathew. Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation. Nanoscale Res Lett (2009) 4: 144–152.

DOI: 10.1007/s11671-008-9214-5

Google Scholar

[16] S. Rengaraji, X. Z. Li, Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2, 4, 6-trichlorophenol in aqueous suspension, Journal of Molecular Catalysis A: Chemical 243 (2006) 60–67.

DOI: 10.1016/j.molcata.2005.08.010

Google Scholar

[17] K. Hirano, E. Suzuki, A. Ishikawa, T. Moroi, H. Shiroishi, M. Kaneko, Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light, Journal of Photochemistry and Photobiology A: Chemistry 136 (2000) 157–161.

DOI: 10.1016/s1010-6030(00)00342-7

Google Scholar

[18] S. Taira, T. Miki, H. Yanagi, Dye-sensitization of n-TiO2 single-crystal electrodes with vapor-deposited oxometal phthalocyanines, Applied Surface Science 143 (1999) 23–29.

DOI: 10.1016/s0169-4332(99)00082-3

Google Scholar

[19] H. Chao, Y. Yun, H. Xingfang, L. Andre, Influence of silver doping on the photocatalytic activity of titania films, Applied Surface Science 200 (2002) 239-247.

DOI: 10.1016/s0169-4332(02)00927-3

Google Scholar

[20] U. G. Akpan, B. H. Hameed, The advancements in sol–gel method of doped-TiO2 photocatalysts, Applied Catalysis A: General 375 (2010) 1–11.

DOI: 10.1016/j.apcata.2009.12.023

Google Scholar

[21] Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, Journal of Physical Chemistry C 111 (2007) 6976-6982.

DOI: 10.1021/jp0685030

Google Scholar

[22] Y. Wang, Z.H. Jiang, F. J. Yang, Effect of Fe-doping on the pore structure of meso-porous titania, Materials Science and Engineering B 134 (2006) 76-79.

DOI: 10.1016/j.mseb.2006.07.026

Google Scholar

[23] C. Chen, H. Bai, C. Chang, Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2, Journal of Physical Chemistry C 111 (2007) 15228–15235.

DOI: 10.1021/jp0716233

Google Scholar

[24] D. G. Huanga, S. J. Liao, J. M. Liu, Z. Danga, L. Petrik, Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method,Journal of Photochemistry and Photobiology A: Chemistry 184 (2006) 282–288.

DOI: 10.1016/j.jphotochem.2006.04.041

Google Scholar

[25] R. Asahi, T. Morikawa, K. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[26] S. H. Othman, S. A. Rashid, T. I. M, Ghazi, N. Abdullah, Fe-Doped TiO2 nanoparticles produced via MOCVD: Synthesis, characterization, and photocatalytic activity, Journal of Nanomaterials Volume 2011, Article ID 571601.

DOI: 10.1155/2011/571601

Google Scholar

[27] J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides, Progress in Solid State Chemistry 18, (1988) 259–341.

DOI: 10.1016/0079-6786(88)90005-2

Google Scholar

[28] W. Weng, M. Ma, P. Du, G. Zhao, G. Shen, J. Wang, G. Han, Superhydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition, Surface & Coatings Technology 198 (2005) 340– 344.

DOI: 10.1016/j.surfcoat.2004.10.071

Google Scholar

[29] S. Riyas, G. Krishnan, P. N. M. Das, Anatase–rutile transformation in doped titania under argon and hydrogen atmospheres, Advances in Applied Ceramics 106 (2007) 255-264.

DOI: 10.1179/174367607x202645

Google Scholar

[30] P. Cacciafesta, K. R. Hallam, C. A. Oyedepo, A. D. L. Humphris, M. J. Miles, K. D. Jandt, Characterization of Ultraflat Titanium Oxide Surfaces, Chemistry of Materials 14 (2002) 777-789.

DOI: 10.1021/cm0112183

Google Scholar

[31] S. Liu, X. Chen, X. Chen, Preparation of N-Doped visible-light response nanosize TiO2 photocatalyst using the acid-catalyzed hydrolysis method, Chinese Journal of Catalysis 27 (2006) 697–702.

DOI: 10.1016/s1872-2067(06)60037-5

Google Scholar

[32] C. K. Kim, K. Nakaso, X. Bin , K. Okuyama, M. Shimada, A new observation on the phase transformation of TiO2 nanoparticles produced by a CVD method, Aerosol Science and Technology 39 (2005) 104–112.

DOI: 10.1080/027868290906986

Google Scholar

[33] G. Oliveri, G. Ramis, G. Busca, V. Sanchez Escribano, Thermal stability of vanadia–titania catalysts, Journal of Materials Chemistry 3 (1993) 1239-1249.

DOI: 10.1039/jm9930301239

Google Scholar

[34] D. A. H. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science 46 (2011) 855–874.

DOI: 10.1007/s10853-010-5113-0

Google Scholar

[35] H. Liu, S. Cheng, M. Wu, H. Wu, J. Zhang, W. Li, C. Cao, Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation, Journal of Physical Chemistry A 104 (2000) 7016-7020.

DOI: 10.1021/jp000171q

Google Scholar

[36] H. E. Chao, Y. U. Yun, H. U. Xingfang, A. Larbot, Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder, Journal of the European Ceramic Society 23 (2003) 1457-1464.

DOI: 10.1016/s0955-2219(02)00356-4

Google Scholar

[37] S. Vargas, R. Arroyo, E. Haro, R. Rodriguez, Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method, Journal of Materials Research 14 (1999) 3932-3937.

DOI: 10.1557/jmr.1999.0532

Google Scholar

[38] J. Yang, H. Bai, X. Tan, J. Lian, IR and XPS investigation of visible-light photocatalysis-Nitrogen-carbon-doped TiO2 film, Applied Surface Science 253 (2006) 1988-(1994).

DOI: 10.1016/j.apsusc.2006.03.078

Google Scholar

[39] Y. Z. Li, D.S. Hwang, N. H. Lee, S. J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chemical Physical Letters 404 (2005) 25-29.

DOI: 10.1016/j.cplett.2005.01.062

Google Scholar

[40] J. Yang, H. Bai, Q. Jiang, J. Lian, Visible-light photocatalysis in nitrogen–carbon-doped TiO2 films obtained by heating TiO2 gel–film in an ionized N2 gas, Thin Solid Films 516 (2007) 1736-1742.

DOI: 10.1016/j.tsf.2007.05.034

Google Scholar

[41] X. Chen, C. Burda, Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles, Journal of Physical Chemistry B 108 (2004) 15446-15449.

DOI: 10.1021/jp0469160

Google Scholar

[42] W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Applied Catalysis B: Environmental 69 (2007) 138-144.

DOI: 10.1016/j.apcatb.2006.06.015

Google Scholar

[43] Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension, Solar energy 82 (2008) 706-713.

DOI: 10.1016/j.solener.2008.02.006

Google Scholar

[44] E.A. Konstantinova, A.I. Kokorin, S. Sakthivel, H. Kisch, K. Lips, Carbon-doped titanium dioxide: visible light photocatalysis and EPR Investigation, Chimia International Journal for Chemistry 61 (2007) 810-814.

DOI: 10.2533/chimia.2007.810

Google Scholar

[45] D. T. Cat, A. Pucci, H. C. K. Wandelt, Physics and engineering of new materials, Springer proceedings in physics 127 (2009) 189.

Google Scholar

[46] Z. Ding, G. Q. Lu, P. F. Greenfield, Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water, Journal of Physical Chemistry B 104 (2000) 4815-4820.

DOI: 10.1021/jp993819b

Google Scholar

[47] A. S. Altar, M. S. Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, Modifier ligands effects on the synthesized TiO2 nanocrystals, Journal of Materials Science 43 (2008) 1723-1729.

DOI: 10.1007/s10853-007-2244-z

Google Scholar

[48] J. A Wang, R Limas-Ballesteros and T. Lopez, Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts, Journal of Physical Chemistry B 105 (2001) 9692–9698.

DOI: 10.1021/jp0044429

Google Scholar