Separation of the Driving Force and Radiation-Enhanced Dislocation Glide in 4H-SiC

Article Preview

Abstract:

Anomalous expansion of stacking faults (SFs) induced in 4H-SiC under electronic excitations is driven by an electronic force and is achieved by enhanced glide of partial dislocations. An experimental attempt to separate the two physically different effects has been made by conducting photoluminescence (PL) mapping experiments which allowed simultaneous measurements of partial dislocation velocity and SF-originated PL intensity the latter of which is proposed to be related to the driving force for SF expansion through the density of free excitons planarly confined in the SF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

July 2012

Export:

Price:

[1] H. Lendenmann, F. Dahquist, N. Johansson, R. Söderholm, P.A. Nilsson, J. P. Bergman and P. Skytt, Mater. Sci. Forum 353-356 (2001) 727-730.

DOI: 10.4028/www.scientific.net/msf.353-356.727

Google Scholar

[2] J. P. Bergman, L. Lendenmann, P. Å. Nilsson, U. Lindelfelt, P. Skytt, Mater. Sci. Forum 353-356 (2001) 299-302.

Google Scholar

[3] for comprehensive review: M. Skowronski and S. Ha, J. Appl. Phys. 99 (2006) 011101-1-24.

Google Scholar

[4] S. Ha, M. Benamara, M. Skowronski and H. Lendenmann, Appl. Phys. Lett. 83 (2003) 4957-4959.

DOI: 10.1063/1.1633969

Google Scholar

[5] H. Idrissi, G. Regula1, M. Lancin, J. Douin, B. Pichaud, phys. stat. sol. C 2 (2005) 1998-2003.

Google Scholar

[6] A. Galeckas, J. Linnros and P. Pirouz, Phys. Rev. Lett. 96 (2006) 025502-1-4.

Google Scholar

[7] T. Miyanagi, H. Tsuchida, I. Kamata, T. Nakamura, K. Nakayama, R. Ishii, Y. Sugawara, Appl. Phys. Lett. 89 (2006) 062104-1-3.

DOI: 10.1063/1.2234740

Google Scholar

[8] for review of REDG: K. Maeda, S. Takeuchi, Enhancement of dislocation mobility in semiconducting crystals by electronic excitations, in: F. R. N. Nabarro, M. S. Duesbery (Eds.), Dislocations in Solids vol. 10, North-Holland, Amsterdam, 1996, pp.443-504.

DOI: 10.1016/s1572-4859(96)80009-x

Google Scholar

[9] J. D. Weeks, J. C. Tully, L. C. Kimerling, Phys. Rev. B 12 (1975) 3286-3292.

Google Scholar

[10] S. Ha, M. Skowronski, J. J. Sumakeris, M. J. Paosley and M. K. Das, Phys. Rev. Lett. 92 (2004) 175504-1-4.

Google Scholar

[11] J. D. Caldwell, R. E. Strahlbush, K. D. Hobart, O. J. Glembocki, and K. X. Liu, Appl. Phys. Lett. 90 (2007) 143519-1-3.

Google Scholar

[12] J. D. Caldwell, R. E. Strahlbush, M. G. Ancona, O. J. Glembocki, and K. D. Hobart, J. Appl. Phys. 108 (2010) 044503-1-7.

Google Scholar

[13] M. Tajima, E. Higashi, T. Hayashi, H. Kinoshita, and H. Shiomi, Mater. Sci. Forum 527-529 (2006) 711-716.

DOI: 10.4028/www.scientific.net/msf.527-529.711

Google Scholar

[14] N. Hoshino, M. Tajima, T. Nishiguchi, K. Ikeda, T. Hayashi, H. Kinoshita and H. Shiomi, Japn. J. Appl. Phys. 46 (2007) L973-L975.

DOI: 10.1143/jjap.46.l973

Google Scholar

[15] M. S. Miao, S. Limpijumnong, W. R. L. Lambrecht, Appl. Phys. Lett. 79 (2001) , 4360-4362.

Google Scholar

[16] T. A. Kuhr, J. Lin, H. J. Chung, M. Skowronski. F. Szmulowicz, J. Appl. Phys. 92 (2002) 5863-5871.

Google Scholar

[17] W. R. L. Lambrecht, M. S. Miao, Phys. Rev. B 73 (2006) 155312-1-6.

Google Scholar

[18] K. Maeda, Radiation-enhanced dislocation glide - the current status of research, in: O. Ueda, S. Pearton (Eds.), Materials and Reliability Handbook for Semiconductor Optical and Electronic Devices, Springer, Berlin, 2012 to be published.

DOI: 10.1007/978-1-4614-4337-7_9

Google Scholar

[19] M. H. Hong, A. V. Samant, P. Pirouz, Philos. Mag. A 80 (2000) 919-935.

Google Scholar

[20] S. G. Sridhara, F. H. C. Carlsson, J. P. Bergman, E. Janzén, Appl. Phys. Lett. 79 (2001) 3944-3946.

DOI: 10.1063/1.1425084

Google Scholar

[21] R. Hirano, Y. Sato, M. Tajima, K. M. Ito, K. Maeda, Proc. ICSCRM 2011, to be published.

Google Scholar