Photocatalytic Reduction of Carbon Dioxide by Water: A Step towards Sustainable Fuels and Chemicals

Article Preview

Abstract:

Photo catalytic reduction of carbon dioxide or artificial photo synthesis to yield hydrogen and hydrocarbons like methane, methanol etc., has emerged as a subject/process of intensive study due to its potential applications towards abatement of atmospheric CO2 levels and conversion to fuels and chemicals. This Chapter provides a comprehensive picture of the process that has posed several scientific and technological challenges, like activation of most stable molecules-CO2 and water, extremely low conversion rates, complex reaction pathways involving multi electron transfer steps and short catalyst life. All the major aspects/developments on this process like, the salient features and technological aspects, thermodynamic and kinetic characteristics, various types of photo-active catalysts-, like, titania based catalysts and titania with various dopants and modifiers, various metal oxides/sulfides/nitrides/ layered titanates, binary and ternary oxides of Nb, Ta, Ga & In mixed oxide catalysts, metal complexes, and supra molecular catalysts-, sensitization by macro cylic ligands, influence of process parameters, catalyst structure-property-activity correlations, aspects of deactivation of catalysts, reaction mechanistic aspects and sequential surface reaction pathways, recent trends and future directions have been covered. Design and development of efficient catalyst systems and achieving higher yield of desired products (higher selectivity) and extending the catalyst life are the key issues being pursued by the researchers. The process is in nascent stage and further improvements are needed as CO2 conversion rates are extremely small, with products formed in terms of 1-10 micro moles/hr. One of the means of improving the process efficiency is to carry out electrochemical reduction of CO2 using solar electric power, with an integrated Photo electrochemical cell (PEC). Yet another option is to reduce CO2 to methanol with hydrogen produced using solar powered PEC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-62

Citation:

Online since:

December 2012

Export:

Price:

[1] N. Serpone, E. Pelizzetti, Photo catalysis: Fundamentals and Applications, Wiley-Interscience, New York, 1989; N. Serpone and A. V. Emeline, Int. J. Photoenergy, 2002, 4, 91-131.

Google Scholar

[2] D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Photo catalysis. A Multi-faced concept for green chemistry, Chem. Soc. Rev., 38 (2009) 1999–(2011).

DOI: 10.1039/b714786b

Google Scholar

[3] E. C. C. Baly, I. M. Heilbron, W. F. Barker, CX. Photo catalysis. Part I. the synthesis of formaldehyde and carbohydrates from carbon dioxide and water, J. Chem. Soc. Trans., 119 (1921) 1025–1035.

DOI: 10.1039/ct9211901025

Google Scholar

[4] E. C. C. Baly, I. M. Heilbron, D. P. Hudson, CXXX. -Photo catalysis. Part II. The photosynthesis of nitrogen compounds from nitrates and carbon dioxide, J. Chem. Soc. Trans., 121 (1922)1078–1088.

DOI: 10.1039/ct9222101078

Google Scholar

[5] Z. Jiang, T. Xiao, V. L. Kuznetsov, P. P. Edwards, Turning carbon dioxide into fuel, Phil. Trans. R. Soc. A368 (2010) 3343-3364.

DOI: 10.1098/rsta.2010.0119

Google Scholar

[6] M. Halmann, Photo electrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, Nature, 275 (1978) 115-116.

DOI: 10.1038/275115a0

Google Scholar

[7] T. Inoue, A. Fujishima, K. Honda, Photo electro catalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-638.

DOI: 10.1038/277637a0

Google Scholar

[8] M. Halmann, M. Ulman, B. A. Blajeni, Photochemical Solar Collector for the Photo assisted Reduction of Aqueous Carbon-Dioxide, Sol. Energy, 31 (1983) 429–431.

DOI: 10.1016/0038-092x(83)90145-7

Google Scholar

[9] B. A-Blajeni, M. Halmann, J. Manassen, Photo reduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials, Solar Energy, 25 (1980) 165-170.

DOI: 10.1016/0038-092x(80)90472-7

Google Scholar

[10] M. Anpo, H. Yamashita, Y. Ichihashi,S. Ehara, Photo catalytic reduction of CO2 with water on various Titanium Oxide catalysts", J. Electroanal. Chem., 396 (1995).

DOI: 10.1016/0022-0728(95)04141-a

Google Scholar

[11] J.C.S. Wu, Photo catalytic reduction of Green house gas CO2 to fuel, Catal. Surv. Asia, 13 (2009) 30-40.

Google Scholar

[12] N.M. Dimitrijevic, B. K. Vijayan, O. G. Poluektov, T. Rajh, K. A. Gray, H. He and P. Zapol Role of water and carbonates in photo catalytic transformation of CO2 to CH4 on titania, J. Amer. Chem. Soc., 133 (2011) 3964-3971.

DOI: 10.1021/ja108791u

Google Scholar

[13] O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, High-Rate Solar Photo catalytic conversion of CO2 and Water Vapor to Hydrocarbon Fuels, Nano Lett., 9 (2009)731-737.

DOI: 10.1021/nl803258p

Google Scholar

[14] S.C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, Towards Solar Fuels: Photo catalytic Conversion of Carbon dioxide to Hydrocarbons, ACS Nano Lett., 4 (2010) 1259-1278.

DOI: 10.1021/nn9015423

Google Scholar

[15] V. P. Indrakanti, J. D. Kubickib,H. H. Schobert , A Photo induced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2 (2009) 745–758.

DOI: 10.1039/b822176f

Google Scholar

[16] G. Palmisano, E. Garcı´a-Lo´ pez, G. Marcı´, V. Loddo, S. Yurdakal, V. Augugliaro and L. Palmisano, Advances in selective conversions by heterogeneous photo catalysis, Chem. Comm., 46 (2010) 7074-7089.

DOI: 10.1039/c0cc02087g

Google Scholar

[17] K. Koci, L. Obalova, Z. Lancy, Photo catalytic reduction of CO2 over TiO2 based Catalysts, Chem. Papers, 62 (2008) 1-9.

Google Scholar

[18] M.A. Scibioh, B. Viswanathan, Electrochemical reduction of carbon dioxide-A status report, Proc. Indian National Science Academy, 70A (2004) 407-462.

Google Scholar

[19] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams, Ind. Eng. Chem. Res, 45 (2006) 2558-2568.

DOI: 10.1021/ie0505763

Google Scholar

[20] S. Kaneco , Y. Shimizu, K. Ohta, T. Mizuno Photo catalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger" J. Photochem. Photobiol. A: Chem. 115 (1998).

DOI: 10.1016/s1010-6030(98)00274-3

Google Scholar

[21] E. Fujita, Photochemical carbon dioxide reduction with metal complexes" Coord. Chem. Rev. 185-186 (1990).

Google Scholar

[22] M.R. Hoffmann, J.A. Moss, M.M. Baum, Artificial photosynthesis: Semiconductor photo catalytic fixation of CO2 to afford higher compounds, Dalton Trans. 40 (2011) 5151-5158.

DOI: 10.1039/c0dt01777a

Google Scholar

[23] K. Li, D. Martin, J. Tang, Conversion of Solar Energy to Fuels by Inorganic Heterogeneous Systems, Chinese J. Catal., 32 (2011) 879-890.

DOI: 10.1016/s1872-2067(10)60209-4

Google Scholar

[24] Y. Izumi, Recent advances in the photo catalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond, Coord. Chem. Rev. (2012). http: /dx. doi. org/10/. 1016/j. ccr. 2012. 04. 018.

Google Scholar

[25] C-C. Yang, Y-H. Yu, B. van der Linden, J.C.S. Wu and G. Mul, Artificial photo synthesis over crystalline TiO2 based catalysts: Fact or Fiction?, J. Amer. Chem. Soc., 132 (2010) 8398-8406.

DOI: 10.1021/ja101318k

Google Scholar

[26] J. Michl, Photochemical CO2 reduction: Towards as artificial leaf?", Nat. Chem. 3 (2011)268-9; R. D. Richardson, E. J. Holland and B. K. Carpenter "A renewable amine for photochemical reduction of CO2, Nat. Chem. 3 (2011) 301.

DOI: 10.1038/nchem.1000

Google Scholar

[27] J. K. Hurst, In pursuit of water oxidation catalysts for solar fuel production, Science, 328 (2010) 315-316.

DOI: 10.1126/science.1187721

Google Scholar

[28] K. Koci, K. Mateju, L. Obalova, S. Krejcikova, Z. Lacny, D. Placha, L. Capek, A. Hospodkova, O. Solcova Effect of silver doping on the TiO2 for Photocatalytic reduction of CO2, Appl. Catal B: Environ., 96 (2010) 239–244.

DOI: 10.1007/978-90-481-8650-1_24

Google Scholar

[29] D. Luo, Y. Bi, W. Kan, N. Zhang, and S. Hong, Copper and Cerium Co-Doped Titanium dioxide on Catalytic Photo reduction of Carbon dioxide with Water: experimental and theoretical studies, J. Mol. Structure, doi: . 1016/j. molstruc. 2011. 03. 044.

DOI: 10.1016/j.molstruc.2011.03.044

Google Scholar

[30] X-H . Xia, Z-J. Jia, Y. Yu, Y. Liang, Z. Wang, L-L. Ma, Preparation of multi-walled carbon nano tube supported TiO2 and its Photo catalytic activity in the reduction of CO2 with H2O, Carbon, 45 (2007) 717–721.

DOI: 10.1016/j.carbon.2006.11.028

Google Scholar

[31] Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, and S. Yoshida, Photo-catalytic reaction of H2O+CO2 over pure and doped Rh/TiO2, J. Photochem. Photobiol. A: Chem., 126 (1999) 117-123.

DOI: 10.1016/s1010-6030(99)00113-6

Google Scholar

[32] N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance ofRu doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal. B, 62 (2006) 169–180.

DOI: 10.1016/j.apcatb.2005.07.009

Google Scholar

[33] H. Tsuneoka, K. Teramura, T. Shishido, T. Tanaka, Adsorbed Species of CO2 and H2 on Ga2O3 for the Photo catalytic Reduction of CO2", J. Phys. Chem. C, 114 (2010).

Google Scholar

[34] K. Teramura, H. S-I. Okuoka, H. Tsuneoka, T. Shishido, T. Tanaka Photo catalytic reduction of CO2 using H2 as reductant over ATaO3 photo catalysts (A = Li, Na, K), Appl. Catal. B: Environ., 96 (2010) 565–568.

DOI: 10.1016/j.apcatb.2010.03.021

Google Scholar

[35] K. Rajalakshmi, V. Jeyalakshmi, K. R . Krishnamurthy & B. Viswanathan, Photo- catalytic reduction of carbondioxide by water on titania: Role of photo physical and structural properties, Ind. J. Chemistry, 51A (2012) 411-419.

Google Scholar

[36] V. Jeyalakshmi, R. Mahalakshmy, K. R. Krishnamurthy & B. Viswanathan Photo catalytic reduction of CO2 with water on CuO-TiO2- Influence of the characteristics of titania support, 15 th National Workshop on The role of New Materials in Catalysis, NCCR, IIT Madras, Dec-11-13, (2011).

Google Scholar

[37] V. Jeyalakshmi, K. Rajalakshmi, K. R . Krishnamurthy & B. Viswanathan, Sodium tantalite based catalysts for photo catalytic reduction of carbon dioxide, 15 th National Workshop on The role of New Materials in Catalysis, NCCR, IIT Madras, Dec-11-13, (2011).

Google Scholar

[38] E. J. Maginn, What to Do with CO2, J. Phy. Chem. Lett., 1 (2010) 3478–3479.

Google Scholar

[39] Q-H. Zhang, W-D. Han, Y-J. Hong, & J-G. Yu, Photo catalytic reduction of CO2 and H2O on Pt loaded TiO2 catalyst, Catalysis Today, 148 (2009) 335-340.

DOI: 10.1016/j.cattod.2009.07.081

Google Scholar

[40] S. S. Kim, G. Kishan, M. J. Choi, K. W. Lee, Catalytic conversion of CO2 to hydrocarbons over rare earth promoted iron catalysts supported on KY Zeolite, Appl. Catal. A. Gen., 179 (1999) 155-159.

DOI: 10.1016/s0926-860x(98)00322-6

Google Scholar

[41] K. Demeestere, J. Dewulf and H. V. Langenhove , Heterogeneous Photo-catalysis as an Advanced Oxidation Process for the Abatement of Chlorinated, Monocyclic Aromatic and Sulfurous Volatile Organic Compounds in Air: State of the Art, Critical Rev. in Environ. Sci. &Tech., 37 (2007).

DOI: 10.1080/10643380600966467

Google Scholar

[42] R. W. Matthews, S. R. McEvoy, A comparison of 254 nm and 350 nm excitation of TiO2 in simple photo catalytic reactors", J. Photochem. Photobiol. A: Chem, 66 (1992).

DOI: 10.1016/1010-6030(92)80008-j

Google Scholar

[43] J. Fan, E.Z. Liu, L. Tian, X.Y. Hu, Qi He, T. Sun, Study on Synergistic Effect of N and Ni2+ on Nano Titania in Photo catalytic Reduction of CO2, Am. Soc. Civil Eng., (2010) Doi: 10. 1061/(ASCE)EE. 1943-7870. 0000311.

Google Scholar

[44] Y. Liu,B. Huang, Y. Dai , X. Zhang, X. Qin ,M. Jiang, M. Whangbo, Selective ethanol formation from photo catalytic reduction of Carbon Dioxide in water with BiVO4 photo catalyst, Catal. Commun, 11(2009) 210-213.

DOI: 10.1016/j.catcom.2009.10.010

Google Scholar

[45] T. Mizuno, K. Adachi, K. Ohta, A. Saji Effect of CO2 pressure on photo catalytic reduction of CO2 using TiO2inaqueous solutions", J. Photochem. Photobiol. A: Chemistry. 98 (1996).

DOI: 10.1016/1010-6030(96)04334-1

Google Scholar

[46] Tan, S. S., L. Zou, E. Hu, Photo catalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets", Catal. Today, 115(2006).

DOI: 10.1016/j.cattod.2006.02.057

Google Scholar

[47] K. Kocˇ, L. Obalova´ , L. Mateˇjova´ , D. Placha´ , Z. Lacny´ , J. Jirkovsky´ , O. Sˇolcova´, Effect of TiO2 particle size on the photo catalytic reduction of CO2, Appl. Catal. B: Environ. 89 (2009) 494–502.

Google Scholar

[48] K. Kocí, MartinReli, O. Kozák, Z. Lacny, Daniela Plachá, PetrPraus, Lucie Obalov, Influence of reactor geometry on the yield of CO2 Photo catalytic reduction, Catal. Today (2010) doi: 10. 1016/j. cattod. 2010. 12. 054.

Google Scholar

[49] Wu, J. C. S., T. -H. Wu, T. Chu, H. Huang, and D. Tsai, Application of Optical-Fiber Photo reactor for CO2Photocatalytic Reduction", Topic in Catal., 47 (2008).

Google Scholar

[50] Y. Ku, W-H Lee, W-Y Wang, Photo catalytic reduction of carbonate in aqueous solution by UV/TiO2 process, J. Mol Catal. A: Chemical, 212 (2004) 191–196.

DOI: 10.1016/j.molcata.2003.10.047

Google Scholar

[51] K. Sayama, H. Arakawa, Effect of carbonate salt addition on the photo catalytic decomposition of liquid water over Pt–TiO2 catalyst, J. Chem. Soc. Faraday Trans. 93 (1997) 1647-1654.

DOI: 10.1039/a607662i

Google Scholar

[52] I.H. Tseng, W.C. Chang, J. C. S. Wu, Photo catalytic reduction of CO2 using sol-gel derived titania and titania supported copper catalysts, Appl. Catal. B: Environ, 37 (2002) 37–48.

DOI: 10.1016/s0926-3373(01)00322-8

Google Scholar

[53] B. J. Liu, T. Torimoto, H. Yoneyama, Photo catalytic reduction of CO2 using surface-modified CdS photo catalysts in organic solvent", J. Photochem. Photobiol. A: Chem., 113 (1998).

Google Scholar

[54] M. Pengfei Ji, Takeuchi and T M Cuong, J. Zhang, M. Matsuoka, M. Anpo, Recent advances in visible light-responsive titanium oxide – based photo catalysts, Res. Chem Intermed, 36 (2010) 327-347.

DOI: 10.1007/s11164-010-0142-5

Google Scholar

[55] Y. Yang, H. Zhong and C. Tian, Photo catalytic mechanisms of modified titania under visible light, Res Chem. Intermed, 37 (2011) 91-102.

DOI: 10.1007/s11164-010-0232-4

Google Scholar

[56] C. M. Teh and A. R. Mohamed, Roles of titanium dioxide and ion-doped titanium dioxide on photo catalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review", J Alloys Compd, 509 (2011).

DOI: 10.1016/j.jallcom.2010.10.181

Google Scholar

[57] Fujishima, X. Zhang & D.A. Tryk, TiO2 photo catalysis and related surface phenomena, Surf Sci Rep, 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[58] M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photo catalysts operating under visible light irradiation, J. Catal, 216 (2003) 505-516.

DOI: 10.1016/s0021-9517(02)00104-5

Google Scholar

[59] M. R. Hoffmann, S.T. Martin, W. Chi and W. Detlef, Environmental applications of Semiconductor Photo catalysis, Chem Rev, 95 (1995) 69-96.

Google Scholar

[60] M. A. Malati and W. K. Wong, Doping TiO2 for solar energy Applications, Surf. Tech, 22 (1984) 305-322.

DOI: 10.1016/0376-4583(84)90094-3

Google Scholar

[61] R. Long, N.J. English, Synergistic effects on Band gap-Narrowing in Titania by Co-doping from First-Principles Calculations", Chem. Mater, 22 (2010).

DOI: 10.1021/cm903688z

Google Scholar

[62] B.F. Gao, Y. Ma, Y. A. Cao, W. S. Yang, J. N. Yao, Great Enhancement of Photo catalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide, J Phys Chem B, 110 (2006) 14391-14397.

DOI: 10.1021/jp0624606

Google Scholar

[63] Y. F. Shen, T. Y. Xiong, T. F. Li, K. Yang, Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response, Appl. Catal B, 83 (2008) 177-185.

DOI: 10.1016/j.apcatb.2008.01.037

Google Scholar

[64] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Yoshimichi Ohki, N. Yoshida and T. Watanabe, A Plasmonic Photo catalyst Consisting of Silver Nano particles Embedded in Titanium Dioxide, J. Amer. Chem. Soc, 130 (2008) 1676-1680.

DOI: 10.1021/ja076503n

Google Scholar

[65] Cla´udia Gomes Silva, R. Jua´ rez, T. Marino, R. Molinari, H. Garcı´a, Influence of Excitation Wavelength (UV or Visible Light) on the photo catalytic Activity of Titania Containing Gold Nano particles for the Generation of Hydrogen or Oxygen from Water, J. Amer. Chem. Soc, 133 (2011).

DOI: 10.1021/ja1086358

Google Scholar

[66] Jiun-Jen Chen, J. C. S. Wu, P. C. Wu, D. P. Tsai, Plasmonic Photo catalyst for H2 Evolution in Photo catalytic Water Splitting", J Phys. Chem. C, 115 (2011).

Google Scholar

[67] G. Li, S. Ciston, Z. V. Saponjic, L. Chen, N. M. Dimitrijevic,T. Rajh, K. A. Gray, Synthesizing mixed-phase TiO2 nano composites using a hydrothermal method for photo-oxidation and photo reduction applicatons, J. Catal., 253 (2008) 105–110.

DOI: 10.1016/j.jcat.2007.10.014

Google Scholar

[68] M. Gopal, W. J. Moberly Chan, L. C. De Jonghe, Room temperature synthesis of crystalline metal oxides, J Mater Sci, 32 (1997) 6001-6008.

DOI: 10.1023/a:1018671212890

Google Scholar

[69] S. Ito, S. Inoue, H. Kawada, M. Hara, M. Iwasaki, H. Tada, Low-Temperature Synthesis of Nanometer-sized crystalline TiO2 Particles and their Photo induced Decomposition of Formic Acid, J Colloid Interf. Sci, 216 (1999) 59-64.

DOI: 10.1006/jcis.1999.6275

Google Scholar

[70] K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide, Mater Sci, 29 (1994) 1617-1622.

DOI: 10.1007/bf00368935

Google Scholar

[71] O. Ishitani, C. Inoue, Y. Suzuki, T. Ibusuki, Photo reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal deposited TiO2, J. Photochem. Photobiol A, 72 (1993) 269-271.

DOI: 10.1016/1010-6030(93)80023-3

Google Scholar

[72] T. S. Dzhabiev, B. B. Tarasov, A. M. Uskov, Photo catalytic reduction of carbon dioxide in aqueous semiconductor suspensions, Catal. Today, 13 (1992) 695-696.

DOI: 10.1016/0920-5861(92)80113-2

Google Scholar

[73] F. Solymosi, G. Klivenyi, HREELS study of photo-induced formation of CO2 anion radical on Rh(111) surface, Catal Lett, 22 (1993) 337-342.

DOI: 10.1007/bf00807242

Google Scholar

[74] F. Solymosi, I Tombtcz, Photo catalytic reaction of H2O+CO2 over pure and doped Rh/TiO2, Catal. Lett, 27 (1994) 61-65.

DOI: 10.1007/bf00806978

Google Scholar

[75] J. Rasko, F. Solymosi, Infrared Spectroscopic Study of the Photo induced Activation of CO2 on TiO2 and Rh/TiO2 Catalysts, J Phys Chem, 98 (1994) 7147-7152.

DOI: 10.1021/j100080a009

Google Scholar

[76] Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2, J Photochem Photobiol A, 126 (1999) 117-123.

DOI: 10.1016/s1010-6030(99)00113-6

Google Scholar

[77] Willner, R. Maidan, D. Mandler, H. Dum, G. Dorr, K. Zengerle, Photosensitized Reduction of CO2 to CH4 and H2 Evolution in the presence of Ruthenium and Osmium Colloids: Strategies To Design Selectivity of Products distribution, J. Amer. Chem. Soc, 109 (1987).

DOI: 10.1002/chin.198803094

Google Scholar

[78] M. Halmann, V. Katzir, V. Borgarello, J. Kiwi, Photo assisted carbon dioxide reduction on aqueous suspensions of titanium dioxide, Sol. Energy Mater., 10 (1984) 85-91.

DOI: 10.1016/0165-1633(84)90010-8

Google Scholar

[79] K. Chandrasekaran, J. K. Thomas, Photochemical reduction of carbonate to formaldehyde on TiO2 powder, Chem Phys Lett, 99 (1983) 7-10.

Google Scholar

[80] Z. Goren, I. Willner, A. J. Nelson, Selective Photo reduction of CO2/HCO3- to Formate by aqueous suspensions and colloids of Pd-TiO2, J Phys Chem, 94 (1990) 3784-3790.

DOI: 10.1021/j100372a080

Google Scholar

[81] M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, Photo catalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of zeolites: Effects of the Structure of the Active Sites and the Addition of Pt, J. Phys. Chem. B, 101 (1997).

DOI: 10.1021/jp962696h

Google Scholar

[82] T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki, O. Ishitani, Photo chemical reduction of CO2 using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2, ACS Appl. Mater Interfaces, 3 (2011) 2594-2600.

DOI: 10.1021/am200425y

Google Scholar

[83] M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A Screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity, Appl. Catal B, 23 (1999) 169-174.

DOI: 10.1016/s0926-3373(99)00079-x

Google Scholar

[84] R. Sasikala, A. R. Shirole, V. Sudarsan, V. S. Kamble, C. Sudakar, R. Naik, R. Rao,S. R. Bharadwaj, Role of support on the photo catalytic activity of titanium oxide, Appl Catal A, Gen., 390 (2010) 245-252.

DOI: 10.1016/j.apcata.2010.10.016

Google Scholar

[85] M. K. Seery , R. George , P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photo catalysis, J. Photochem. Photobiol A: Chemistry 189 (2007) 258-263.

DOI: 10.1016/j.jphotochem.2007.02.010

Google Scholar

[86] A. Sclafani, J. M. Hermann, Influence of metallic silver and of platinum-silver bimetallic deposits on the photo catalytic activity of titania (anatase and rutile) in organic and aqueous media, J Photochem Photobiol A, 113 (1998) 181-188.

DOI: 10.1016/s1010-6030(97)00319-5

Google Scholar

[87] V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov, Photo catalytic properties of TiO2 modified with platinum and silver nano particles in the degradation of oxalic acid in aqueous solution, Appl Catal B: Environ, 63 (2006) 266-271.

DOI: 10.1016/j.apcatb.2005.10.014

Google Scholar

[88] M. A. Asi, C. He, M. Su, D. Xia, L. Lin, H. Deng, Y. Xiong, R. Qui, X. Li, Photo catalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nano composites under visible light, Catal. Today, 175 (2011) 256-263.

DOI: 10.1016/j.cattod.2011.02.055

Google Scholar

[89] T-V. Nguyen, J.C. S. Wu, Photo reduction of CO2 in an optical-fibre photo reactor: Effect of metals addition and catalyst carrier", Appl. Catal. A: Gen, 335, (2008).

Google Scholar

[90] K. Adachi, K. Ohta, T. Mizuno, Photo catalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide, Solar Energy, 53 (1994) 187-190.

DOI: 10.1016/0038-092x(94)90480-4

Google Scholar

[91] H. Yamashita, H. Nishigushi, N. Kamada, & M. Anpo, Photo catalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Res Chem. Interm. 20 (1994) 825-833.

DOI: 10.1163/156856794x00568

Google Scholar

[92] H. Tseng, J. C. S. Wu, Chemical states of metal-loaded titania in the photo reduction of CO2, Catal. Today, 97 (2004) 113-119.

DOI: 10.1016/j.cattod.2004.03.063

Google Scholar

[93] H. Tseng, J. C. S. Wu, H. Y. Chou, Effects of sol-gel procedures on the photo catalysis of Cu/TiO2 in CO2 photo reduction, J. Catal., 221 (2004) 432-440.

DOI: 10.1016/j.jcat.2003.09.002

Google Scholar

[94] Slamet, H. W. Nasution, E. Purnama, S. Koesla, Gunlauardi, Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method, J Catal. Commun., 6 (2005) 313-319.

DOI: 10.1016/j.catcom.2005.01.011

Google Scholar

[95] L. Huang, F. Peng, H. Wang, H. Yu, Z. Li, Preparation and characterization of Cu2O/TiO2 nano-nano heterostructure photo catalysts", Catal. Commun, 10 (2009).

DOI: 10.1016/j.catcom.2009.06.011

Google Scholar

[96] Y. Li, W. Wang, Z. Zhan, M. Woo, C. Wu, P. Biswas, Photo catalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts, Appl. Catal B: Environmental, 100 (2010) 386-392.

DOI: 10.1016/j.apcatb.2010.08.015

Google Scholar

[97] C. Shifu, Z. Sujuan, L. Wei, Z. Wei, Preparation and activity evaluation of p–n junction photo catalyst NiO/TiO2", J. Hazardous Mater., 155 (2008).

DOI: 10.1016/j.jhazmat.2007.11.063

Google Scholar

[98] A.V. Emeline, V. N. Kuznetsov, V. K. Rybchuk, N. Serpone, Visible-light-active titania photo catalysts: the case of N doped TiO2 –properties and some fundamental issues", Int J Photoenergy, 111 (2008).

DOI: 10.1155/2008/258394

Google Scholar

[99] Z, Zhao, J. Fan, J. Wang and R. Li Effect of heating temperature on photo catalytic reduction of CO2 by N-TiO2 nano tube catalyst, Catal. Commun., 21 (2012) 32-37.

Google Scholar

[100] S. T. Hussain, K. Khan, R. Hussain, Size control synthesis of sulphur doped titanium dioxide (anatase) nano particles, its optical property and its photo catalytic reactivity for CO2+H2O conversion and phenol degradation, J Nat. Gas Chem, 18 (2009).

DOI: 10.1016/s1003-9953(08)60133-4

Google Scholar

[101] W. Wang, P. Serp P, P. Kalck and J.L. Faria, Visible light photo degradation of phenol on MWNT- TiO2 composite catalysts prepared by a modified sol–gel method, J. Mol. Catal A: Chem, 235 (2005) 194–199.

DOI: 10.1016/j.molcata.2005.02.027

Google Scholar

[102] Tryba, Increase of the photo catalytic activity of TiO2 by Carbon and iron modifications, Int. J. Photoenergy, (2008) [Article ID 721824].

Google Scholar

[103] R. Leary, A. Westwood, Carbonaceous nano materials for the enhancement of TiO2 photoc atalysis, Carbon, 49 (2011) 741-772.

DOI: 10.1016/j.carbon.2010.10.010

Google Scholar

[104] Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Carbon-doped TiO2 photo catalyst synthesized without using an external carbon precursor and the visible light activity, Appl. Catal. B, 91 (2009) 355-361.

DOI: 10.1016/j.apcatb.2009.06.001

Google Scholar

[105] Di Valentin, G. Pacchioni, A. Selloni, Theory of Carbon doping of Titanium dioxide, Chem Mater, 17 (2005) 6656-6665.

DOI: 10.1021/cm051921h

Google Scholar

[106] A. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Carbon and Nitrogen Co-doped TiO2 with enhanced visible light photo catalytic activity, Ind Eng Chem Res, 46 (2007) 2741-2746.

DOI: 10.1021/ie061491k

Google Scholar

[107] H. Sun, Y. Bai, Y. Cheng, W. Jin, N. Xu, Preparation and characterization of Visible-light-driven Carbon-Sulphur-Codoped TiO2 photo catalysts, Ind Eng Chem Res, 45 (2006), 4971-4976.

DOI: 10.1021/ie060350f

Google Scholar

[108] T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, Photocatalytic oxidation reactivity of holes in the sulphur-and carbon-doped TiO2 Powders studied by time-resolved diffuse reflectance spectroscopy, J Phys Chem B, 108 (2004).

DOI: 10.1021/jp0470593

Google Scholar

[109] K. Woan, G. Pyrgiotakis, W. Sigmund, Photo catalytic carbon-nanotube-TiO2 composites, Adv Mater, 21 (2009) 2233-2239.

DOI: 10.1002/adma.200802738

Google Scholar

[110] J. L. Faria, W. Wang, In: P. Serp, J.L. Figueiredo Ed, Carbon materials for catalysis, Hoboken, NJ: John Wiley & Sons; Chapter 13, p.481–506, (2009).

Google Scholar

[111] J. H. Park, S. Kim, A. J. Bard, Novel carbon-doped TiO2 nano tube arrays with high aspect ratios for efficient solar water splitting, Nano Lett, 6 (2006) 24-28.

DOI: 10.1021/nl051807y

Google Scholar

[112] K. Dai, T. Peng, D. Ke, B. Wei, Photo catalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nano particles under visible light irradiation, Nanotechnol, 20 (2009) 125603.

DOI: 10.1088/0957-4484/20/12/125603

Google Scholar

[113] G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, Anatase TiO2 nano particles /carbon nanotubes nanofibers: Preparation, characterization and photo catalytic properties, J Mater Sci 42 (2007) 7162–7170.

DOI: 10.1007/s10853-007-1609-7

Google Scholar

[114] Y. Ou, J. Lin, S. Fang, D. Liao, MWNT-TiO: Ni composite catalyst: A new class of catalyst for photo catalytic H2 evolution from water under visible light illumination, Chem. Phys Lett., 429 (2009) 199-203.

DOI: 10.1016/j.cplett.2006.08.024

Google Scholar

[115] M. Guldi, M. Prato, Excited-State properties of C60 Fullerene derivatives, Acc. Chem. Res, 33 (2000) 695-703.

DOI: 10.1021/ar990144m

Google Scholar

[116] D. Gust, T. A. Moore, A. L. Moore, Photochemistry of supramolecular systems containing C60, J Photochem Photobiol B, 58 (2000) 63-71.

DOI: 10.1016/s1011-1344(00)00145-7

Google Scholar

[117] T. Makarova, Electrical and optical properties of pristine and polymerized Fullerenes, Semiconductors, 35 (2001) 243-278.

DOI: 10.1134/1.1356145

Google Scholar

[118] V. Apostolopoulou, J. Vakros, C. Kordulis, A. Lycourghiotis, "Preparation and characterization of.

Google Scholar

[60] fullerene nanoparticles supported on titania used as a photocatalyst", Colloids Surf A, 349 (2009) 189-194.

Google Scholar

[119] Q. Xie, E. Perez-Cordero, L. Echegoyen, Electrochemical detection of C606- and C706-: Enhanced stability of fullerides in solution, J. Amer. Chem. Soc, 114 (1992) 3978-3980.

DOI: 10.1021/ja00036a056

Google Scholar

[120] Y. Ohsawa, T. Saji, Electrochemical detection of C606- at low temperature, J Chem Soc Chem Commun, 10 (1992) 781-782.

DOI: 10.1039/c39920000781

Google Scholar

[121] P. V. Kamat, I. Bedja, S. Hotchandani, Photoinduced charge transfer between carbon and semiconductor clusters. One electron reduction of C60 in colloidal TiO2 semiconductor suspensions, J. Phys. Chem., 98 (1994) 9137-9142.

DOI: 10.1021/j100088a008

Google Scholar

[122] P V Kamat, M. Gevaert, K. Vinodgopal, Photochemistry on semiconductor surfaces Visible light induced oxidation of C60 on TiO2 nanoparticles, J Phys . Chem B, 101 (1997) 4422-4427.

DOI: 10.1021/jp970047f

Google Scholar

[123] V. Krishna, N. Noguchi, B. Koopman, B. Moudgil, Enhancement of titanium dioxide photo catalysis by water-soluble fullerenes, J Colloid Interface Sci, 304 (2006)166-171.

DOI: 10.1016/j.jcis.2006.08.041

Google Scholar

[124] V. Krishna, D. Yanes, W. Imaram, A. Angerhofer, B. Koopman, B. Moudgil, Mechanism of enhanced photocatalysis with polyhydroxy fullerenes, Appl. Catal. B: Environ., 79 (2008) 376-381.

DOI: 10.1016/j.apcatb.2007.10.020

Google Scholar

[125] P. V. Kamat, Graphene based nano architectures. Anchoring semiconductor and Metal nanoparticles on a two-dimensional carbon support, J Phys Chem Lett, 1 (2009) 520-527.

DOI: 10.1021/jz900265j

Google Scholar

[126] V. Lightcap, T. H. Kosel, P. V. Kamat, Nano particles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide, Nano. Lett, 10 (2010) 577-583.

DOI: 10.1021/nl9035109

Google Scholar

[127] C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour, A. R. Barron, High-Yield organic dispersions of unfunctionalized Graphene, Nano Lett. 9 (2009) 3460–3462.

DOI: 10.1021/nl9016623

Google Scholar

[128] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, High-Yield production of graphene by liquid phase exfoliation of graphite, Nat. Nanotechnol., 3 (2008).

DOI: 10.1038/nnano.2008.215

Google Scholar

[129] Williams, B. Seger, P. V. Kamat, TiO2 – graphene nanocomposites. UV-assisted photocatalytic reduction of grapheme oxide, ACS Nano, 2 (2008) 1487-1491.

DOI: 10.1021/nn800251f

Google Scholar

[130] Go´mez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern & U. Kaiser, Atomic structure of reduced graphene oxide, NanoLett, 10 (2010) 1144-1148.

DOI: 10.1021/nl9031617

Google Scholar

[131] Y. T. Liang, B. K. Vijayan, K. A. Gray, M. C. Hersam, Minimizing graphene defects enhances titania nano composite-based photo catalytic reduction of CO2 for improved solar fuel production, Nano Lett, 11 (2011) 2865- 2870.

DOI: 10.1021/nl2012906

Google Scholar

[132] L. Cao, S. Sahu, P. Anilkumar, C. E. Bunker, J. Xu, K. A. S. Fernando, P. Wang, E. A. Guliants, K. N. Tackett, Y. Sun, Carbon nano particles as visible-light Photo catalyst for efficient CO2 conversion and beyond, J. Amer. Chem. Soc, 133 (2011).

DOI: 10.1021/ja200804h

Google Scholar

[133] M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photo catalysts operating under visible light irradiation", J Catalysis, 216 (2003).

DOI: 10.1016/s0021-9517(02)00104-5

Google Scholar

[134] M. Anpo and H. in Heterogeneous Photo catalysis, Ed.M. Schiavello, Wiley & Sons, London, (1997) p.131.

Google Scholar

[135] J. Zhang, Y. Hu, M. Matsuoka, H. Yamashita, M. Minagawa, H. Hidaka & M. Anpo, Relationship between the local structures of titanium oxide photo catalysts and their reactivities in the decomposition of NO", J Phys Chem B, 105 (2001) 8395-8398.

DOI: 10.1021/jp012080e

Google Scholar

[136] K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photo catalytic reduction of CO2 with H2O on Ti- Zeolite photo catalysts: effect of the hydrophobic and hydrophilic properties, J Phys Chem B, 105 (2001) 8350-8355.

DOI: 10.1021/jp010885g

Google Scholar

[137] K. Ikeue, H. Yamashita, M. Anpo, Photo catalytic reduction of CO2 with H2O on Titanium oxides prepared within the FSM-16 Mesoporous Zeolite, Chem Lett, 28 (1999) 1135-1136.

DOI: 10.1246/cl.1999.1135

Google Scholar

[138] M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen and T. Onishi Photocatalysis over Binary Metal Oxides. Enhancement of the Photo catalytic Activity of TiO2 in Titanium-Silicon Oxides, J. Phys. Chem., 90 (1986) 1633-1636.

DOI: 10.1021/j100399a036

Google Scholar

[139] Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and meso porous molecular sieves, Catal. Today, 45 (1998).

DOI: 10.1016/s0920-5861(98)00219-3

Google Scholar

[140] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, Y. Ichihashi, S.G. Zhang, D. R. Park, S. Ehara, S. E. Park, J. S. Chang, J. W. Yoo, Photo catalytic reduction of CO2 with H2O on titanium oxides anchored within zeolites, Studies in Surf Sci. Catal, 114 (1998).

DOI: 10.1016/s0167-2991(98)80740-4

Google Scholar

[141] Yamashita, Y. Ichihashi, S. G. Zhang, Y. Matsumura, Y. Souma, T. Tatsumi, M. Anpo, Photocatalytic decomposition of NO at 275K on titanium oxide catalysts anchored within zeolite cavities and framework, Appl Surf Sci, 121/122 (1997) 305-309.

DOI: 10.1016/s0169-4332(97)00311-5

Google Scholar

[142] A. Yamashita, Y. Ichihashi, M. Anpo, M. Hashimoto, C. Louis, Photocatalytic decomposition of NO at 275K on titanium oxides included within Y-Zeolite cavities: The structure and role of the active sites, J Phys Chem, 100 (1996) 16041-16044.

DOI: 10.1021/jp9615969

Google Scholar

[143] S. H. Bossmann, C. Turro, C. Schnabel, M. R. Pokhrel, L. M. Payawan, Jr, B. Baumeister, M. Woerner, Ru(bpy)32+/TiO2-Codoped Zeolites: Synthesis, Characterization, and the Role of TiO2 in Electron Transfer Photocatalysis, J Phys Chem B, 105 (2001).

DOI: 10.1021/jp002480m

Google Scholar

[144] H. Yamashita,M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh and N. Iwamato, Preparation of Titanium Oxide Photo catalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photo catalytic Reactivities for the Degradation of2-Propanol Diluted in Water, J. Phys. Chem. B 102 (1998).

DOI: 10.1021/jp982835q

Google Scholar

[145] S. Z. Chu, S. Inoue, K. Wada, D. Li, J. Suzuki, Fabrication and Photocatalytic Characterizations of Ordered Nanoporous X-Doped (X )N, C, S, Ru, Te, and Si) TiO2/Al2O3 Films on ITO/Glass, Langmuir, 21 (2005) 8035-8041.

DOI: 10.1021/la050902j

Google Scholar

[146] M. Alvaro, E. Carbonell, V. Fornes, H. Garcia, Enhanced photo catalytic activity of Zeolite-Encapsulated TiO2 clusters by complexation with organic additives and N doping, Chem Phys Chem, 7 (2006) 200-205.

DOI: 10.1002/cphc.200500264

Google Scholar

[147] W. Wang, J. Park, P. Biswas, Rapid synthesis of nano structured Cu-TiO2-SiO2 composites for CO2 photo reduction by evaporation driven self assembly, Catal Sci Technol, 1 (2011) 593-600.

DOI: 10.1039/c0cy00091d

Google Scholar

[148] M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, S.G. Zhang, Y. Ichihashi, D. R. Park, Y. Suzuki, K. Koyano, T. Tatsumi, Photo catalytic reduction of CO2 with H2O on Ti-MCM-41and Ti-MCM-48 mesoporous zeolite catalysts, Catal. Today, 44 (1998) 327-332.

DOI: 10.1016/s0920-5861(98)00206-5

Google Scholar

[149] H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N. Itoh, N. Iwamoto, Preparation of Titanium Oxide Photocatalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photocatalytic Reactivities for the Degradation of 2-Propanol Diluted in Water, J Phys Chem B, 102 (1998).

DOI: 10.1021/jp982835q

Google Scholar

[150] M. Ogawa, K. Ikeue, M. Anpo, Transparent Self-Standing Films of Titanium-Containing Nanoporous Silica, Chem Mater, 13 (2001) 2900-2904.

DOI: 10.1021/cm0102281

Google Scholar

[151] a.H. Huang, X. Gub, J. Zhou, K. Ji, H. Liu, Y. Feng, Photocatalytic degradation of Rhodamine B on TiO2 nanoparticles modified with porphyrin and iron-porphyrin", Catal. Commun, 11 (2009).

DOI: 10.1016/j.catcom.2009.08.012

Google Scholar

[152] Z. Zhihuan, F. Jimin, W. Zhizhong, Photo-catalytic CO2 reduction using sol-gel derived titania-supported zinc-phthalocyanine, J Cleaner Prodn, 15 (2007) 1894-1897.

DOI: 10.1016/j.jclepro.2006.05.003

Google Scholar

[153] L. Shaohua, Z. Zhihuan and W. Zhizhong, Photoc atalytic reduction of carbon dioxideusing sol-gel derived titania supported CoPc catalysts, Photochem Photobiol Sci, 6 (2007) 695-700.

DOI: 10.1039/b613098d

Google Scholar

[154] a.Z. Zhao, J. Fan, M. Xie & Z. Wang, Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation", J Cleaner Prodn, 17 (2009).

DOI: 10.1016/j.jclepro.2009.02.016

Google Scholar

[155] C. Aprile, A. Corma and H. Garcia, Enhancement of the photo catalytic activity of TiO2through spatial structuring and particle size control: from sub-nanometric to sub-millimetric length scale, Phys. Chem. Chem. Phys, 10 (2008) 769-783.

DOI: 10.1039/b712168g

Google Scholar

[156] C. Colmenares, R. Luque, J. M. Campelo, F. Colmenares, Z. Karpiński & A. A. Romero, Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Ligno-cellulosic Biomass: An Overview, Materials, 2(2009) 2228-2258.

DOI: 10.3390/ma2042228

Google Scholar

[157] T. Tachikawa, M. Fujitsuka, T. Majima, Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts, J Phys Chem C, 111 (2007) 5259-5275.

DOI: 10.1021/jp069005u

Google Scholar

[158] P. Salvador, Hole diffusion length in n-Ti02 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis, J Appl Phys, 55 (1984) 2977.

DOI: 10.1063/1.333358

Google Scholar

[159] Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, I. Uhlendorf, Dynamic Response of Dye-Sensitized Nano Crystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy, J. Phys Chem B, 101 (1997).

DOI: 10.1021/jp972466i

Google Scholar

[160] C. Song, W. Yu, B. Zhao, H. Zhang, C. Tang, K. Sun, X. Wua, L. Dong, Yi Chen, Efficient fabrication and photo catalytic properties of TiO2 hollow spheres, Catal. Commun, 10 (2009) 650-654.

DOI: 10.1016/j.catcom.2008.11.010

Google Scholar

[161] X. Chen, S. S. Mao, Synthesis of titanium dioxide (TiO2) nanomaterials, J Nanosci. Nanotechnol, 6 (2006) 906-925.

Google Scholar

[162] C.C. Lo, C.H. Hung, C.S. Yuan, J.F. Wu, Photo reduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photo catalytic reactor, Sol. Energy Mater. Sol. Cells 91(2007) 1765–1774.

DOI: 10.1016/j.solmat.2007.06.003

Google Scholar

[163] G. Guan ,T. Kida ,T. Harada ,M. Isayama, A. Yoshida, Photo reduction of CO2 with water over K2Ti6O13 photo catalyst combined with Cu/ZnO catalyst under concentrated sunlight, App. Catal. A: Gen. 249 (2003) 11-18.

DOI: 10.1016/s0926-860x(03)00205-9

Google Scholar

[164] G. Guan , T. Kida , T. Ma , K. Kimura,E. Abe , A. Yoshida , Reduction of aqueous CO2 at ambient temperature using zero-valent iron-based composites, Green Chem. 5 (2003) 630–634.

DOI: 10.1039/b304395a

Google Scholar

[165] G. Guan , T. Kida, A. Yoshida , Reduction of CO2 with water under concentrated sunlight using photo catalyst combined with Fe based catalyst, App. Catal., B: Environ., 41 (2003) 387-396.

DOI: 10.1016/s0926-3373(02)00174-1

Google Scholar

[166] A. Watanabe, Photosynthesis of methanol and methane from CO2 and H2O molecules on a ZnO surface, Surf. Sci. Lett. 279 (1992) 236-242.

DOI: 10.1016/0039-6028(92)90546-i

Google Scholar

[167] Kanemoto, T. Shiragami, C. Pac , S. Yanagida , Semiconductor Photo catalysis. 13 Effective photo reduction of carbon dioxide catalyzed by zinc sulphide quantum crystallites with low density of surface defects, J. Phy. Chem . 96 (1992) 3521-3526.

DOI: 10.1021/j100187a062

Google Scholar

[168] Y. Wang , Y. Wang ,Y. Gao , Photo catalytic H2 evolution from water in the presence of carbon dioxide over NiO/Ca2Fe2O5, Reaction Kinetics Mechanics Catal., 99 (2010) 485–491.

DOI: 10.1007/s11144-009-0135-9

Google Scholar

[169] A. Ahmed , Y. Shibata ,T. Taniguchi T, Izumi, Photocatalytic conversion of carbon dioxide into methanol using Zn-Cu-M(III) (M=aluminium, gallium) layered double hydroxides, J. Catal. 279 (2011) 123-135.

DOI: 10.1016/j.jcat.2011.01.004

Google Scholar

[170] S.C. Yan, S.X. Ouyang ,J. Gao, M. Yang , J.Y. Feng , X.X. Fan , L.J. Wan , Z.S. Li, J.H. Ye,Y. Zhou and Z.G. Zou , A room temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2, Angew. Chem. Int. Ed 49 (2010).

DOI: 10.1002/ange.201003270

Google Scholar

[171] J. C. S. Wu, C. W. Huang, In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation, Front. Chem. Eng. China 2010, 4(2): 120–126.

DOI: 10.1007/s11705-009-0232-3

Google Scholar

[172] Ulagappan and H. Frei, J. Phys. Chem. A 104 (2000) 7834; W. Lin, H. Han and H. Frei, CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate Sieve, J Phys. Chem. B 108 (2004) 18269-18273.

DOI: 10.1021/jp040345u

Google Scholar

[173] X. Li, Z. Zongjin, W. Li, H. Pan, Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2, Appl. Catal. A: Gen. 429– 430 (2012)31– 38.

DOI: 10.1016/j.apcata.2012.04.001

Google Scholar

[174] A. Cybula, M. Klein, A. Zielinska-Jurek, M. janczarek, A. Zaleska, Carbon dioxide conversion. The effect of titanium dioxide immobilization conditions and photocatalyst type, Physicochem. Probl. Miner. Process. 48 (2012) 159–167.

Google Scholar

[175] H. Li, Y. Lie, Y. Huang, Y. Fang, Y. Xu, L. Zhu, Z. Li, Photocatalytic reduction of Carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation, J. Nat. Gas Chem., 20 (2011) 145-150.

DOI: 10.1016/s1003-9953(10)60166-1

Google Scholar

[176] K. Sayama, H. Arakawa, Photocatalytic decomposition of water and photo catalytic reduction of carbon dioxide over zirconia catalyst, J. Phys. Chem. 97 (1993) 531–533.

DOI: 10.1021/j100105a001

Google Scholar

[177] S. Yoshida, Y. Kohno, A new type of photo catalysis initiated by photo excitation of adsorbed carbon dioxide on ZrO2, Catal. Surveys from Japan, 4 (2000) 107-114.

Google Scholar

[178] H. Park, J. H. Choi, K. M. Choi, D. K. Lee, J. K. Kang, Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane, J. Mater. Chem., 22 (2012) 5304–5307.

DOI: 10.1039/c2jm30337j

Google Scholar

[179] Y. Matsumoto, M. Obata, J. Hombo, Photo catalytic reduction of carbon dioxide on p-type CaFe2O4 powder, J. Phy. Chem., 98 (1994) 2950-2951.

DOI: 10.1021/j100062a035

Google Scholar

[180] Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan, Z. Zou, High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light, ACS Appl. Mater. Interfaces, 3 (2011).

DOI: 10.1021/am2008147

Google Scholar

[181] H. Shi, T. Wang, J. Chen, C. Zhu, J. ye, Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts, Catal Lett, 141 (2011) 525–530.

DOI: 10.1007/s10562-010-0482-1

Google Scholar

[182] Peng Li, S. Ouyang, G. Xi, T. Kako, J. ye, The effect of crystal structure and electronic structure on photo catalytic H2 evolution and CO2 reduction over two phases of perovskite structure, J. Phys. Chem. C 116 (2012) 7621−7628.

DOI: 10.1021/jp210106b

Google Scholar

[183] N. Zhang, S. Ouyang, T. Kako, J. Ye, Mesoporous Zinc germanium oxynitride for CO2 photo reduction under visible light, Chem. Commun., 48 (2012) 1269-1271.

DOI: 10.1039/c2cc16900b

Google Scholar

[184] K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, Photocatalytic reduction of carbon dioxide over Ag Co-loaded ALa2Ti4O15 (A=Ca, Sr, and Ba) using water as reducing reagent, J. Am. Chem. Soc. 133 (2011) 20863–20868.

DOI: 10.1021/ja207586e

Google Scholar

[185] C. W. Tsai, H. M. Chen, R. S. Liu, K. Asakura, T. S. Chan, Ni@NiO Core shell structure-modified Nitrogen doped InTaO4 for solar driven highly efficient CO2 reduction to methanol, J. Phys. Chem. C, 115 (2011) 10180–10186.

DOI: 10.1021/jp2020534

Google Scholar

[186] D.S. Lee, H. J. Chen, Y. W. Chen, Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 co-catalysts, J. Phys. Chem. Solids 73 (2012) 661–669.

DOI: 10.1016/j.jpcs.2012.01.005

Google Scholar

[187] X. Li, H. Pan, W. Li, Z. Zhuang, Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts, Appl. Catal. A: Gen, 413– 414 (2012) 103– 108.

DOI: 10.1016/j.apcata.2011.10.044

Google Scholar

[188] Q.D. Truong, J. Y. Liu, C. C. Chung, Y. C. Ling, Photo catalytic reduction of CO2 on FeTiO3/TiO2 photo catalyst, Catal. Commun. 19 (2012) 85–89.

DOI: 10.1016/j.catcom.2011.12.025

Google Scholar

[189] J. W. Lekse, M. K. Underwood, J. P. Lewis, C. Matranga, Synthesis, characterization, electronic structure, and photocatalytic behavior of CuGaO2 and CuGa1-xFexO2 (X= 0. 05, 0. 10, 0. 15, 0. 20) delafossites, J. Phys. Chem. C, 116 (2012).

Google Scholar

[190] X. Li, W. Li, Z. Zhuang, Y. Zhong, QLi, and L. Wang Photo catalytic Reduction of Carbon Dioxide to Methane over SiO2-Pillared HNb3O8, J. Phys. Chem. C. DOI: 10. 1021/jp303365z (2012).

Google Scholar

[191] F. Saladin, L. Fross and I. Kamber, Photosynthesis of CH4 at a TiO2 surface from gaseous H2O and CO2, J. Chem. Soc., Chem. Commun. (1995), 533-534.

DOI: 10.1039/c39950000533

Google Scholar

[192] F. Saladin and I. Alxneit, Temperature dependence of the photo chemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2,J. Chem. Soc., Faraday Trans. 93, (1997) 4159-4163.

DOI: 10.1039/a704801g

Google Scholar

[193] Pathak, M. J. Meziani, L. Castillo and Y. P. Sun, Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction, Green Chem., 7 (2005) 667-670.

DOI: 10.1039/b507103h

Google Scholar

[194] H. C. Yang, H.Y. Lin, Y.S. Chien J.C.S. Wu and H. H. Wu, Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photo catalysts for Photo reduction of CO2 to Methanol, Catal. Lett., 131 (2009) 381-387.

DOI: 10.1007/s10562-009-0076-y

Google Scholar

[195] C-C. Yang, J. Vernimmen, V. Meynen, P. Cool and G. Mul, Mechanistic study of hydrocarbon formation in photo catalytic CO2 reduction over Ti-SBA-15, J. Catalysis, 284 (2011).

DOI: 10.1016/j.jcat.2011.08.005

Google Scholar

[196] S. S. Tan, L. Zou and E. Hu, Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour, Catalysis Today, 131 (2008) 125-129.

DOI: 10.1016/j.cattod.2007.10.011

Google Scholar

[197] K. Koci, L. Obalova and O. Solcova, Kinetic study of photo catalytic reduction of CO2 over TiO2, Chemical and Process Engineering, 31 (2010) 395-407.

Google Scholar

[198] W. Junhu , Z. Zhigang , Ye. Jinhua, Some structural and photo physical properties of two functional double oxides Bi2MTaO7 (M = Ga and In),J. Alloys and Compds. 377, 248-252 (2004).

DOI: 10.1016/j.jallcom.2004.01.059

Google Scholar

[199] J. Ye , Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsushita and T. Shishido, Correlation of crystal and electronic structures with photo physical properties of water splitting photo catalysts InMO4(M = V5+, Nb5+, Ta5+), J. Photochem. &Photobiol. A: Chemistry 148, 79-83 (2002).

DOI: 10.1016/s1010-6030(02)00074-6

Google Scholar

[200] W. Kim, T. Seok and W. Choi Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nano particles, Energy Environ. Sci., 5 (2012) 6066-6070.

DOI: 10.1039/c2ee03338k

Google Scholar

[201] J. Morris, G. J. Meyer and E. Fujita Molecular approaches to the photo catalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res. 42 (2009) 1983-(1994).

DOI: 10.1021/ar9001679

Google Scholar

[202] G. Seshadri, C. Lin and A. B. Bocarsly , A new electrocatalyst for reduction of carbon dioxide to methanol at low over potential, J Electroananl. Chem, 372 (1994) 145-150.

DOI: 10.1016/0022-0728(94)03300-5

Google Scholar

[203] Ganesh, Conversion of carbon dioxide to methanol using solar energy-A brief review, Mater Sci. and Applns., 2 (2011) 1407-1415.

DOI: 10.4236/msa.2011.210190

Google Scholar

[204] Y.R. Smith, V. Subramanian and B. Viswanathan, Photo-electrochemical and Photocatalytic conversion of carbon dioxide, Chapter 9, in "Photo-electrochemistry and photobiology for sustainability, 1, 217-242 (2010).

Google Scholar