Metal Doped Titanium Dioxide: Synthesis and Effect of Metal Ions on Physico-Chemical and Photocatalytic Properties

Article Preview

Abstract:

Titanium dioxide (Titania; TiO2) is one of the most widely used metal oxide semiconductor in the field of photocatalysis for removal of pollutants. It has been noted that titanium dioxide is a research friendly material as its physico-chemical and catalytic properties can be easily altered as per specific application. Since many years, researchers have tried to modify the properties of titanium dioxide by means of doping with metals and non-metals to improve its performance for photocatalytic degradation (PCD) applications. The doping of various metal ions like Ag, Ni, Co, Au, Cu, V, Ru, Fe, La, Pt, Cr, Ce, etc. in titanium dioxide have been found to be influencing the band gap, surface area, particle size, thermal property, etc. and therefore the photocatalytic activity in PCD. Moreover, photocatalytic activity of doped titanium dioxide has been observed in visible light range (i.e., at wavelength >400 nm). In this review, different synthesis route for doping of metal ions in titanium dioxide have been emphasised. The effect of metal dopant on the structural, textural and photocatalytic properties of titanium dioxide has been reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

364-378

Citation:

Online since:

December 2012

Export:

Price:

[1] D. Chen, M. Sivakumar, A.K. Ray, Heterogeneous photocatalysis in environmental remediation, Dev. Chem. Eng. Mineral Process. 8 (2000) 505-550.

DOI: 10.1002/apj.5500080507

Google Scholar

[2] R.W. Matthews, in: E. Pelizzetti, M. Schiavello (Eds. ), Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht (1991) 427–449.

Google Scholar

[3] C. Minero, E. Pelizzetti, P. Pichat, M. Sega, M. Vincenti, Formation of Condensation Products in Advanced Oxidation Technologies: The Photocatalytic Degradation of Dichlorophenols on TiO2, Environ. Sci. Technol. 29 (1995) 2226-2234.

DOI: 10.1021/es00009a012

Google Scholar

[4] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[5] R.W. Matthews, in: D.F. Ollis, H. Al-Ekabi (Eds. ), Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam (1993) 121–138.

Google Scholar

[6] Y. Parent, D. Blake, K. Magrini-Bair, C. Lyons, C. Turchi, A. Watt,E. Wolfrum, M. Prairie, Solar photocatalytic processes for the purification of water: state of development and barriers to commercialization, Sol. Energy 56 (1996) 429-438.

DOI: 10.1016/0038-092x(96)81767-1

Google Scholar

[7] Wold, Photocatalytic Properties of TiO2, Chem. Mater. 5 (1993) 280-283.

Google Scholar

[8] W.Y. Choi, A. Termin, M.R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98 (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[9] K.A. Magrini, A. Watt, B. Rinehart, W.B. Stine, T. Tanaka, D.E. Claridge (Eds. ), Solar Engineering, The American Society of Mechanical Engineers. 1(1995) 415-420.

Google Scholar

[10] D. Hufschmidt, D. Bahnemann, J.J. Testa, C.A. Emilio, M.I. Litter, Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2, J. Photochem. Photobiol. A 148 (2002) 247-255.

DOI: 10.1016/s1010-6030(02)00050-3

Google Scholar

[11] M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocat- alyticsystems, Appl. Catal. B: Environ. 23 (1999) 89-114.

Google Scholar

[12] T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag particles loading on photocatalytic reduction of selenateions, Chem. Eng. J. 95 (2003) 179-186.

DOI: 10.1016/s1385-8947(03)00103-7

Google Scholar

[13] C. Su, C.H. Liao, J.D. Wang, C.M. Chiu, B.J. Chen, The adsorption and reactions of methyl iodide on powdered Ag/TiO2, Catal. Today. 97 (2004) 71-75.

DOI: 10.1016/j.cattod.2004.04.053

Google Scholar

[14] V. Vamathevan, R. Amal, Donia Beydoun, G. Low, S. McEvoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, J. Photochem. and Photobiol. A: Chemistry. 148 (2002) 233-245.

DOI: 10.1016/s1010-6030(02)00049-7

Google Scholar

[15] R. J. Tayade, R. G. Kulkarni and R. V. Jasra; Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water Ind., Engg. Chem. Res., 45 (2006) 5231-5238.

DOI: 10.1021/ie051362o

Google Scholar

[16] R. J. Tayade, H. C. Bajaj, Raksh V. Jasra, Photocatalytic Removal of Organic Contaminants From Water Exploiting Tuned Bandgap Photocatalysts, Desalination; 275 (2011) 160-165.

DOI: 10.1016/j.desal.2011.02.047

Google Scholar

[17] H. Gerischer, A. Heller, Photocataly2tic oxidation of organic molecules at TiO2 particles by sunlight in aerated water,J. Electrochem. Soc. 139 (1992) 113-118.

DOI: 10.1149/1.2069154

Google Scholar

[18] H. Gerischer, A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles, J. Phys. Chem. 95 (1991) 5261-5267.

DOI: 10.1021/j100166a063

Google Scholar

[19] C.M. Wang, A. Heller, H. Gerischer, Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds, J. Am. Chem. Soc. 114 (1992) 5230-5234.

DOI: 10.1021/ja00039a039

Google Scholar

[20] D.H. Kim, H.S. Hong, S.J. Kim, J.S. Song, K.S. Lee, Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying, J. Alloy. Compd. 375 (2004) 259-264.

DOI: 10.1016/j.jallcom.2003.11.044

Google Scholar

[21] D.H. Kim, H.S. Park, S.J. Kim, K.S. Lee, Characteristics of Ni 8 wt%-doped titanium dioxide photocatalyst synthesized by mechanical alloying, Catal. Lett. 1–2 (2005) 49-52.

DOI: 10.1007/s10562-004-3084-y

Google Scholar

[22] S.D. Park, Y.H. Cho, W.W. Kim, S.J. Kim, Understanding of Homogeneous Spontaneous Precipitation for Monodispersed TiO2 Ultrafine Powders with Rutile Phase around Room Temperature, J. Solid State Chem. 146 (1999) 230.

DOI: 10.1006/jssc.1999.8342

Google Scholar

[23] H.S. Park, D.H. Kim, J.H. Jho, S.J. Kim, K.S. Lee, The photocatalytic activity of 2. 5 wt% Cu-doped TiO2 nano powders synthesized by mechanical alloying, J. Alloy. Compd. 415 (2006) 51-55.

DOI: 10.1016/j.jallcom.2005.07.055

Google Scholar

[24] D. H. Kim, D. K Choi, S.J. Kim, K. S. Lee, The effect of phase type on photocatalytic activity in transition metal doped TiO2 Nanoparticles, Catal. Commun. 9 (2008) 654-657.

DOI: 10.1016/j.catcom.2007.07.017

Google Scholar

[25] P. K. Biswas, Sol- Gel Derived Optical materials, S. Kumar (Kumar and associates), 4 (1997) 531-554.

Google Scholar

[26] E. H. de Faria, A. L marcal, E. J Nassar, K.J. Ciuffi & P.S. Calefi, Sol-Gel TiO2 Thin Films Sensitized with the Mulberry Pigment Cyanidin, Mat. Res. 10 (2007) 413-417.

DOI: 10.1590/s1516-14392007000400015

Google Scholar

[27] C.S. Jeffrey, Wu, C. Chen, J. Photochem and Photobiol. A: Chemistry 163 (2004) 509-515.

Google Scholar

[28] C.C. Pan, C.S. Jeffrey, Wu, Visible-light response Cr-doped TiO2−XNX photocatalysts, Mat. Chem. and Phys. 100 (2006) 102–107.

DOI: 10.1016/j.matchemphys.2005.12.013

Google Scholar

[29] M.S. Lee, S. Hong, M. Mohseni, Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent, J. Molec. Catal. A: Chemical 242 (2005) 135-140.

DOI: 10.1016/j.molcata.2005.07.038

Google Scholar

[30] S. Kim, S.J. Hwang, W. Choi, Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst, J. Phys. Chem. B, 109 (2005) 24260-24267.

DOI: 10.1021/jp055278y

Google Scholar

[31] E. Sotter, X. Vilanova, E. Llobet, M. Stankova, X. Correig, Niobium -Doped Titania Nanpowders for Gas Sensor Applications, J. Optoelectron. Adv Mater. Vol. 7, No. 3, June 2005, 1395-1398.

Google Scholar

[32] Y. Zhang, H. Zhang, Y. Xu and Y. Wang, Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties, J. Mater. Chem., 13 (2003) 2261-2265.

DOI: 10.1039/b305538h

Google Scholar

[33] L.Q. Jing, X.J. Sun, B. F Xin, B.Q. Wang, W. M Cai, H. G Fu, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity, J. Solid State Chem. 177 (2004) 3375-3382.

DOI: 10.1016/j.jssc.2004.05.064

Google Scholar

[34] T. -D. Nguyen-Phan, M.B. Song, E.J. Kim, E.W. Shin, The role of rare earth metals in lanthanide-incorporated mesoporous titania, Microporous and Mesoporous Materials, 119 (2009) 290-298.

DOI: 10.1016/j.micromeso.2008.10.039

Google Scholar

[35] M. Iwasaki, M. Hara, H. Kawada, H. Taday, S. Ito, Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light, J. Colloid. Interface Sci. 224, (2000), 202-204.

DOI: 10.1006/jcis.1999.6694

Google Scholar

[36] V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, J. Photochem. and Photobiol. A: Chemistry 148 (2002) 233-245.

DOI: 10.1016/s1010-6030(02)00049-7

Google Scholar

[37] X.Z. Li and F. B. Li, Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment, Environ Sci. Technol., 35 (2001) 2381-2387.

DOI: 10.1021/es001752w

Google Scholar

[38] N. Sobana, M. Muruganadham1, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes, J. of Molec. Catal. A: Chemical 258 (2006) 124-132.

DOI: 10.1016/j.molcata.2006.05.013

Google Scholar

[39] K. Iketani, R. De Sunb, M. Toki, K. Hirota, O. Yamaguchi, Materials Science and Engineering B 108 (2004) 187-193.

Google Scholar

[40] T. Ohno, Fumihiro T., KanFujhara, Shinobu Izumi, Michio Matsumura, Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder, J. Photochem. Photobiol A: Chemistry. 127 (1999) 107-110.

DOI: 10.1016/s1010-6030(99)00128-8

Google Scholar

[41] A. Di Paola, E. Garc´ıa-López, S. Ikeda, G. Marc`i, B. Ohtani, L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2, Catalysis Today. 75 (2002) 87-93.

DOI: 10.1016/s0920-5861(02)00048-2

Google Scholar

[42] J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization , J. Photochem. Photobiol A: Chemistry 180 (2006) 196–204.

DOI: 10.1016/j.jphotochem.2005.10.017

Google Scholar

[43] J. Zhou, Y. Zhang, X. S. Zhao, A.K. Ray, Photodegradation of Benzoic Acid over Metal-Doped TiO2, Ind. Eng. Chem. Res. 45 (2006) 3503-3511.

DOI: 10.1021/ie051098z

Google Scholar

[44] A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, H. Aritani, Synthesis of nanotube from a layered H2Ti4O9 · H2O in a hydrothermal treatment using various titania sources , J. Mater. Sci. 39 (2004) 4239-4245.

DOI: 10.1023/b:jmsc.0000033405.73881.7c

Google Scholar

[45] W. Liu, J. Ma, X. GuangQu, W. Cao, Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under visible light irradiation, Res. Chem. Intermed. 35 (2009) 321-328.

DOI: 10.1007/s11164-009-0025-9

Google Scholar

[46] A. Zielinska Jurek, M. Walicka, A. Tadajewska, I. Lacka, M. Gazda, A. Zaleska, Preparation of Ag/Cu-doped titanium(IV) oxide nanoparticles in w/o microemulsion, Physicochem. Probl. Miner. Process. 45(2010) 113-126.

Google Scholar

[47] X.W. Zhang, L.C. Lei, One step preparation of visible-light responsive Fe–TiO2 coating photocatalysts by MOCVD, Mater. Lett., 62 (2008) 895-897.

DOI: 10.1016/j.matlet.2007.07.007

Google Scholar

[48] S Klosek and D. Raftery, Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol, J. Phys. Chem. B, 105 (2001) 2815-2819.

DOI: 10.1021/jp004295e

Google Scholar

[49] J.O. Carneiroa, V. Teixeiraa, A. Portinhaa, L. Dupa´ka, A. Magalha˜ esa, P. Coutinho, Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering, Vacuum 78 (2005).

DOI: 10.1016/j.vacuum.2004.12.012

Google Scholar

[50] G. Zhao, H. Kozuka, H. Lin, T. Yoko, Sol–gel-derived VχTi1−χO2 films and their photocatalytic activities under visible light irradiation, Thin Solid Films 339 (1999) 123-128.

DOI: 10.1016/s0040-6090(98)01227-9

Google Scholar

[51] S.T. Martin, C.L. Morrison, M.R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, J. Phys. Chem. (1994) 13695-13704.

DOI: 10.1021/j100102a041

Google Scholar

[52] J. Choi, H. Park, M.R. Hoffmann, Effects of Single Metal-Ion Doping on the Visible-Light Photo-reactivity of TiO2, Journal of Physical Chemistry C, November 2009, 18-56.

Google Scholar

[53] S.K. Ghosh, A.K. Vasudevan, P.P. Rao, K.G. K Warrier, Influence of different additives on anatase–rutile transformation in titania system , Br. Ceram. Trans., 100 (2001) 151-154.

DOI: 10.1179/096797801681378

Google Scholar

[54] S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, A. Nakano, R.K. Kalia, P. Vashishta, Role of atomic charge transfer on sintering of TiO2 nanoparticles: Variable-charge molecular dynamics , J. Appl. Phys. 88 (2000) 6011-6017.

DOI: 10.1063/1.1321785

Google Scholar

[55] Z.M. Shi, L. Yan, L.N. Jin, X.M. Lu, G. Zhao, The phase transformation behaviors of Sn2+-doped Titania gels, Journal of Non-Crystalline Solids 353 (2007) 2171-2178.

DOI: 10.1016/j.jnoncrysol.2007.02.048

Google Scholar

[56] R.D. Shannon, J.A. Pask, Kinetics of anatase- rutile transformations, J. Am. Ceram. Soc. 98 (1965) 391-398.

Google Scholar

[57] Mackenzie, K. J. D., The calcination of titania: IV. The effect of additives on the anatase–rutile transformation. Trans. J. Brit. Ceram. Soc., 74 (1975) 29-34.

Google Scholar

[58] C. Martin, G. Solana, V. Rives, G. Marci, G, L. Palmisano, A. Sclafani, A. Physico-chemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catal. Lett. 49 (1997) 235-243.

DOI: 10.1007/bf00811803

Google Scholar

[59] J. Zhu, W. Zheng, B He, J. Zhang, M. Anpo, Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A, 216 (2004) 35-43.

DOI: 10.1016/j.molcata.2004.01.008

Google Scholar

[60] A.M. Ruiz, G. Sakai,A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Cr-doped TiO2 gas sensor for exhaust NO2 monitoring, Sensors and Actuators B-Chemical , 93 (2003) 509-518.

DOI: 10.1016/s0925-4005(03)00183-7

Google Scholar

[61] J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, J.R. Mornate, Effects of Nb doping on the TiO2 anatase-to-rutile phase transition, J. Apply. Phy., 91 (2002) 853-861.

DOI: 10.1063/1.1487915

Google Scholar

[62] A. Ahmad, J. Thiel, and S. Ismat Shah, Structural effects of niobium and silver doping on titanium dioxide nanoparticles , Journal of Physics: Conference Series, 61 (2007) 11-15.

DOI: 10.1088/1742-6596/61/1/003

Google Scholar

[63] M. Bettinelli, V. Dallacasa, D. Falcomer, P. Fornasiero, V. Gombac, T. Montini, L. Romano, L, A. Speghini, Photocatalytic activity of TiO2 doped with boron and vanadium, J. Hazard. Mater., 146 (2007) 529-534.

DOI: 10.1016/j.jhazmat.2007.04.053

Google Scholar

[64] S. Ghasemi, S. Rahimnejad, S.R. Setayesh, S. Rohani, M.R. Gholami, Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid, J. Hazard. Mater., 172 (2009) 1573-1578.

DOI: 10.1016/j.jhazmat.2009.08.029

Google Scholar

[65] B. Ohtani, H. Kominami, R.M. Bowman, D.P. Colombo Jr., H. Noguchi, K. Uosaki, Femtosecond Diffuse Reflectance Spectroscopy of Aqueous Titanium(IV) Oxide Suspension: Correlation of Electron-Hole Recombination Kinetics with Photocatalytic Activity, Chem. Lett. 27 (1998).

DOI: 10.1246/cl.1998.579

Google Scholar

[66] H.M. Coleman , K. Chiang and R. Amal, Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water, Chem. Eng. J, 113 (2005) 65-72.

DOI: 10.1016/j.cej.2005.07.014

Google Scholar

[67] N. Daneshvar , M. Rabbani, N. Modirshahla N. and M.A. Behnajady, Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process, J Photochem. Photobiol. A, 168 (2004) 39-45.

DOI: 10.1016/j.jphotochem.2004.05.011

Google Scholar

[68] M.A. Behnajady, N. Modirshahla, N. Daneshvar and M. Rabbani, Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates, Chem. Eng. J, 127 (2007) 167-176.

DOI: 10.1016/j.cej.2006.09.013

Google Scholar

[69] T. Whang , H. Huang, M. Hsieh and J. Chen, Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue, Int. J. Mol. Sci., 10 (2009) 4707-4718.

DOI: 10.3390/ijms10114707

Google Scholar

[70] S. T. Hussain, A. Siddiqa, Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants, Int. J. Environ. Sci. Tech., 8 (2011) 351-362.

DOI: 10.1007/bf03326222

Google Scholar

[71] M.W. Xu, S.J. Bao, X.G. Zhang, Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett., 59 (2005) 2194-2198.

DOI: 10.1016/j.matlet.2005.02.065

Google Scholar

[72] T. Tong, J. Zhang ,B. Tian, F. Chena, D. He, M. Anpo, Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity, Journal of Colloid and Interface Science, 315 (2007).

DOI: 10.1016/j.jcis.2007.06.051

Google Scholar

[73] Mst. ShamsunNahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles, Chemosphere, 65 (2006) 1976-(1982).

DOI: 10.1016/j.chemosphere.2006.07.002

Google Scholar

[74] E. Borgarello, J. Kiwi, L. Gratzel, E. Pelizzetti, M. Visca, Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, J. Am. Chem. Soc., 104 (1982) 2996-3002.

DOI: 10.1021/ja00375a010

Google Scholar

[75] J.M. Herrmann, J. Disdier, P. Pichat, Chem., Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination Phys. Lett., 108 (1984) 618-622.

DOI: 10.1016/0009-2614(84)85067-8

Google Scholar

[76] K. Wilke, H.D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania, J. Photochem. Photobiol. A, 121 (1999) 49-53.

DOI: 10.1016/s1010-6030(98)00452-3

Google Scholar