Stability of Nanofluids

Article Preview

Abstract:

It has long been established that a suspension of nanosized solid particles in liquids provide useful advantages in industrial heat transfer fluid systems. Numerous investigations on nanofluids show a significant enhancement in thermal conductivity over the base fluid in which these nanoparticles are dispersed. However, the stability of the suspension is critical in the development and application of these new kind of heat transfer fluids. Rather, high discrepancy in the published data for the same nanoparticles on the physical and thermal characteristics of nanofluids is primarily due to different methods adopted by different researchers to obtain stable nanofluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion stability has not been well addressed in the literature. Hence, there is a need to establish a standard method of preparation of these nanofluids so as to obtain a unified data which can eventually be utilized for the application of nanofluids. This chapter focuses on the stability of nanofluids prepared via two step process. Different parameters that affect the stability of nanofluids have been discussed. Different techniques that have been used for the evaluation of the stability characteristics of nanofluids have been elucidated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-149

Citation:

Online since:

May 2013

Export:

Price:

[1] K.D. Sattler, Handbook of Nanophysics 3: Nanoparticles and quantum dots, Volume 3, CRC Press, 2010.

Google Scholar

[2] Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid flow, 21 (2000) 58-64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[3] D. Wen, G. Lin, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2009) 141-150.

DOI: 10.1016/j.partic.2009.01.007

Google Scholar

[4] Y. Xuan, Q. Li, W.Hu, Aggregation structure and thermal conductivity of nanofluids, AIChE J. 49 (4) (2003) 1038-1043.

DOI: 10.1002/aic.690490420

Google Scholar

[5] P. Bhattacharya, Thermal Conductivity and Colloidal Stability of Nanofluids, Arizona State University, 2005.

Google Scholar

[6] J. Xu, B. Yu, M. Zou, P. Xu, A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles, J.Phys. D: Appl. Phys. 39 (2006) 4486-4490.

DOI: 10.1088/0022-3727/39/20/028

Google Scholar

[7] B.X. Wang, L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transf. 46 (2003) 2665-2672.

DOI: 10.1016/s0017-9310(03)00016-4

Google Scholar

[8] B.Q. Xiao, G.P. Jiang, L.A. Chen, A fractal study for nucleate pool boiling heat transfer of nanofluids, Sc. China Phys., Mech Astronomy, 53 (1) (2010) 30-37.

DOI: 10.1007/s11433-010-0114-1

Google Scholar

[9] S. Jailani, G.V. Franks, T.W. Healy, Zeta-potential of nanoparticles suspensions: Effect of electrolyte concentration, particle size, and volume fraction, J. Am. Ceram. Soc., 91 (2008) 1141-1147.

DOI: 10.1111/j.1551-2916.2008.02277.x

Google Scholar

[10] L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale Res. Lett.6 (2011) 300.

DOI: 10.1186/1556-276x-6-300

Google Scholar

[11] S.J. Chung, J.P. Leonard, I. Nettleship, J.K. Lee, Y. Soong, D.V. Martello, M.K. Chyu, Characterization of ZnO nanoparticle suspension in water: Effectiveness of ultrasonic dispersion, Powder Tech. (2009) 75-80.

DOI: 10.1016/j.powtec.2009.03.025

Google Scholar

[12] M. Kole, T.K. Dey, Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids, Thermochimica, (2012) 58-65.

DOI: 10.1016/j.tca.2012.02.016

Google Scholar

[13] D. Wasan, A. Nikolov, B. Moudgil, Colloidal disersions: Structure, stability and geometric confinement, Powder Tech. (2005) 135-141.

DOI: 10.1016/j.powtec.2004.12.005

Google Scholar

[14] H. Chang, Y.C. Wu, X.Q. Chen, M.J. Kao, Fabrication of Cu Based Nanofluid with Superior Dispersion, 2006, www.ntut.edu.tw.

Google Scholar

[15] C.T. Wamkam, M.K. Opoku, H. Hong, P. Smith, Effect of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles, J.Appl. Phys., 109 (2011) 024305-1-024305-5.

DOI: 10.1063/1.3532003

Google Scholar

[16] R. Gowda, H. Sun, P. Wang, M. Charmchi, F. Gao, Z. Gu, B. Budhlall, Effects of Particle surface charge, Species, concentration, and Dispersion method on the Thermal conductivity of nanofluids, Adv. Mech. Engg., (2010) 807610.

DOI: 10.1155/2010/807610

Google Scholar

[17] X. Wei, H. Zhu, T. Kong, L. Wang, Synthesis and thermal conductivity of Cu2O nanofluids, Int. J. Heat Mass Transfer 52 (19–20) (2009) 4371–4374.

DOI: 10.1016/j.ijheatmasstransfer.2009.03.073

Google Scholar

[18] X.J. Wang, H. Li, X.F. Li, Z.F. Wang, Stability of TiO2 and Al2O3 Nanofluids, Chin. Phys. Lett., 28 (8) (2011) 086601.

Google Scholar

[19] Y. Fovet, J.Y. Gal, F.T. Chemla, Influence of pH and fluoride concentration on titanium passivating layer: stability of titanium dioxide, Talanta 53 (2001) 1053–1063.

DOI: 10.1016/s0039-9140(00)00592-0

Google Scholar

[20] J. Huang, X. Wang, Influence of pH on the stability characteristics of nanofluid, IEEE, 2009.

Google Scholar

[21] D. Lee, J.-W. Kim, B.G. Kim, A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension, J. Phys. Chem. (2006) 4323–4328.

DOI: 10.1021/jp057225m

Google Scholar

[22] X.J. Wang, X.F. Li, N. Wang, X.Y. Wen, Q. Long, Influence of SDBS on stability of Al2O3 nano-Suspensions, Proc. of SPIE, 6831 (2008) 683113-1-683113-6.

Google Scholar

[23] J. Lee, Convection Performance of Nanofluids for Electronics Cooling, Ph.D., Stanford University, United States – California, 2009.

Google Scholar

[24] R. Mondragon, J.E. Julia, A. Barba, J.C. Jarque, Characterization of silica-water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability, Powder Tech., 224 (2012) 138-145.

DOI: 10.1016/j.powtec.2012.02.043

Google Scholar

[25] X. Li, D. Zhu, X. Wang, Evaluation on dispersion behavior of the aqueous copper nano-suspensions, J. Colloid Interface Sc. 310 (2007) 456-463.

DOI: 10.1016/j.jcis.2007.02.067

Google Scholar

[26] X.J. Wang, D.S. Zhu, S.Yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phy. Lett. 470 (1-3) (2009) 107-111.

DOI: 10.1016/j.cplett.2009.01.035

Google Scholar

[27] J.C. Chou, L.P. Liao, Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method, Thin Solid Films 476 (1) (2005) 157-161.

DOI: 10.1016/j.tsf.2004.09.061

Google Scholar

[28] M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. Thermophys.25 (4) (2004) 971-985.

DOI: 10.1023/b:ijot.0000038494.22494.04

Google Scholar

[29] L. Jiang, L. Gao, J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, J. Colloid Interface Sci. 260 (1) (2003) 89–94.

DOI: 10.1016/s0021-9797(02)00176-5

Google Scholar

[30] R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, P.K. Jain, Pool boiling characteristics of carbon Nanotube based nanofluids over a horizontal tube, J. Thermal. Sci. Eng. Appl. 1 (2) (2009) 022001-022007.

DOI: 10.1115/1.4000042

Google Scholar

[31] D. Zhu, X.Li N. Wang, X. Wang, J. Gao, H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3 –H2O nanofluids. Curr. App. Phy.,9 (1) (2009) 131– 139.

DOI: 10.1016/j.cap.2007.12.008

Google Scholar

[32] M. Saterlie, H. Sahin, B. Kavlicoglu, Y. liu, O. Graeva, Particle size effects in the thermal conductivity enhancement of copper-based nanofluids, Nanoscale Res. Lett. 6 (2011) 217-223.

DOI: 10.1186/1556-276x-6-217

Google Scholar

[33] T. Parametthanuwat, S. Rittidech, A. Pattiya, Y. Ding, S. Witharana, Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer, Nanoscale Res. Lett. 6 (2011) 315-324.

DOI: 10.1186/1556-276x-6-315

Google Scholar

[34] L.Vekas, D.Bica, O.Marinica, Magnetic nanofluids stabilized with various chain length surfactants, Romanian Reports in Phys. 58 (3) (2006) 256-267.

Google Scholar

[35] D. Anandan, K.S. Rajan, Synthesis and stability of cupric oxide based nanofluid: A novel coolant for efficient cooling, Asian J Scientific Res. (2012).

DOI: 10.3923/ajsr.2012.218.227

Google Scholar

[36] Madni, C.Y. Hwang, S.D. Park, Y.H. Choa, H.T. Kim, Mixed surfactant system for stable suspension of multiwalled carbon nanotubes, Colloid surface A. 358 (2010) 101–107.

DOI: 10.1016/j.colsurfa.2010.01.030

Google Scholar

[37] H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren, Y. Yin, Preparation and thermal conductivity of suspensions of graphite nanoparticles, Carbon 45 (2007) 226–228.

DOI: 10.1016/j.carbon.2006.07.005

Google Scholar

[38] J. Glory, M. Bonetti, M. Helezen, M.M.L. Hermite, C. Reynaud, Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes, J. Appl. Phys. 103 (2008) 094309-094315.

DOI: 10.1063/1.2908229

Google Scholar

[39] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transf. 49 (1-2) (2006) 240-250.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.009

Google Scholar

[40] M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat Fluid Flow 30 (4) (2009) 691–699.

DOI: 10.1016/j.ijheatfluidflow.2009.02.005

Google Scholar

[41] K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil, Curr. Appl Phys. 9 (2, Suppl. 1) (2009) e128–e131.

DOI: 10.1016/j.cap.2008.12.054

Google Scholar

[42] H. Chang, Y.C. Wu, X.Q. Chen, M.J. Kao, Fabrication of Cu based Nanofluid with superior Dispersion, 2006, www. Ntut.edu.tw

Google Scholar

[43] D. Lee, J.W. Kim, B.G. Kim, A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension, J. Phys. Chem. (2006) 4323–4328.

DOI: 10.1021/jp057225m

Google Scholar

[44] H. Chang, S.C. Lin, Fabrication method for a TiO2 nanofluid with high roundness and superior dispersion properties, Materials Transactions 48 (4) (2007) 836-841.

DOI: 10.2320/matertrans.48.836

Google Scholar

[45] J.H. Lee, K.S. Hwang, S.P. ang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int.J.Heat Mass Transfer 51 (11-12) (2008) 2651-2656.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.026

Google Scholar

[46] L.Vandsburger, Synthesis and covalent surface modification of carbon nanotubes for prepration of stabilized nanofluid suspensions, M. Engg., McGill University (Canada), Canada (2009)

Google Scholar

[47] Suriyawong, A.S. Dalkilic, S. Wongwises, Nucleate pool boiling heat transfer correlation for TiO2-water nanofluids, J. ASTM International, 9 (5) (2012) JAI104409.

DOI: 10.1520/jai104409

Google Scholar

[48] L. Colla, L. Fedele, M. Scattolini, S. Bobbo, Water-based Fe2O3 nanofluid characterization: Thermal conductivity and viscosity measurements and correlation, Adv.Mech.Engg.(2012) 674947.

DOI: 10.1155/2012/674947

Google Scholar

[49] Y. Yang, A. Oztekin, S. Neti, S. Mohapatra, Particle agglomeration and properties of nanofluids, J. Nanopart. Res. 14 (2012) 852-861.

DOI: 10.1007/s11051-012-0852-2

Google Scholar

[50] S.S. Gupta, V.M. Siva, S. Krishnan, T.S. Sreeprasad, P.K. Singh, T. Pradeep, S.K. Das, Thermal conductivity of nanofluids containing grapheme nanosheets, J. Appl. Phys. 110 (2011) 084302-1 - 084302-6.

DOI: 10.1063/1.3650456

Google Scholar