Conversion of Carbon Dioxide into Several Potential Chemical Commodities Following Different Pathways - A Review

Article Preview

Abstract:

This article reviews the literature related to the direct uses of CO2 and its conversion into various value added chemicals including high energy density liquid fuels such as methanol. The increase in the direct uses of CO2 and its conversion into potential chemical commodities is very important as it directly contributes to the mitigation of CO2 related global warming problem. The method being followed at present in several countries to reduce the CO2 associated global warming is capturing of CO2 at its major outlets using monoethanolamine based solution absorption technique followed by storing it in safe places such as, oceans, depleted coal seams, etc., (i.e., carbon dioxide capturing and storing in safe places, CCS process). This is called as CO2 sequestration. Although, the CCS process is the most understood and immediate option to mitigate the global warming problem, it is considerably expensive and has become a burden for those countries, which are practicing this process. The other alternative and most beneficial way of mitigating this global warming problem is to convert the captured CO2 into certain value added bulk chemicals instead of disposing it. Conversion of CO2 into methanol has been identified as one of such cost effective ways of mitigating global warming problem. Further, if H2 is produced from exclusively water using only solar energy instead of any fossil fuel based energy, and is used to convert CO2 into methanol there are three major benefits: i) it contributes greatly to the global warming mitigation problem, ii) it greatly saves fossil fuels as methanol production from CO2 could be an excellent sustainable and renewable energy resource, and iii) as on today, there is no better process than this to store energy in a more convenient and highly usable form of high energy density liquid fuel. Not only methanol, several other potential chemicals and value added chemical intermediates can be produced from CO2. In this article, i) synthesis of several commodity chemicals including poly and cyclic-carbonates, sodium carbonate and dimethyl carbonate, carbamates, urea, vicinal diamines, 2-arylsuccinic acids, dimethyl ether, methanol, various hydrocarbons, acetic acid, formaldehyde, formic acid, lower alkanes, etc., from CO2, ii) the several direct uses of CO2, and iii) the importance of producing methanol from CO2 using exclusively solar energy are presented, discussed and summarized by citing all the relevant and important references.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-82

Citation:

Online since:

July 2013

Authors:

Export:

Price:

[1] M. Gupta, I. Coyle, and K. Thambimuthu, CO2 capture technologies and opportunities in Canada, 1st Canadian CC&S Technology Roadmap Workshop, 2003, Sep., p.18.

Google Scholar

[2] P. Tans, Trends in carbon dioxide, NOAA/ESRL, 2009.

Google Scholar

[3] C. Mandil, Prospects for CO2 capture and storage, International Energy Agency and Energy Technology Analysis, 20 04, IEA Publications: p. http://www.iea.org/textbase/nppdf/free/2004/prospects.pdf.

DOI: 10.1787/9789264108820-en

Google Scholar

[4] B.M. Reddy, and G. Thrimurthulu, Carbon dioxide-based technologies: converting greenhouse to value added chemicals, Chemical Industry Digest, 2009, July: p.54.

Google Scholar

[5] H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E. Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W. M. Sachtler, L. D. Schmidt, A. Sen, G. A. Somorjai, P. C. Stair, B. R. Stults, and W. Tumas, Catalysis research of relevance to carbon management: progress, challenges, and opportunities, Chem. Rev., 101 (4) (2001) 953-996.

DOI: 10.1021/cr000018s

Google Scholar

[6] M. Halmann, Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells, Nature, 275 (1978) 115.

DOI: 10.1038/275115a0

Google Scholar

[7] S. W. Xu, Y. Lu, J. Li, Z. Y. Jiang, and H. Wu, Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel, Ind. Eng. Chem. Res, 45 (2006) 4567.

DOI: 10.1021/ie051407l

Google Scholar

[8] G. A. Olah, A. Geoppert, and G. K. S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethylether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74 (2009) 487.

DOI: 10.1021/jo801260f

Google Scholar

[9] D. J. Darensbourg, Chemistry of carbon dioxide relevant to its utilization: a personal perspective, Inorganic Chemistry, 49 (23) (2010) 10765.

DOI: 10.1021/ic101800d

Google Scholar

[10] E. Barton Cole, P. S. Lakkaraju, D. M. Rampulla, A. J. Morris, E. Abelev, A. B. Bocarsly, Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights, J. Am. Chem. Soc., 132 (33) (2010) 11539-11551.

DOI: 10.1021/ja1023496

Google Scholar

[11] P. M. Zimmerman, Z. Zhang, and C.B. Musgrave, Simultaneous two-hydrogen transfer as a mechanism for efficient CO2 reduction, Inorganic Chemistry, 49 (19) (2010) 8724-8728.

DOI: 10.1021/ic100454z

Google Scholar

[12] A. J. Traynor, and R. J. Jensen, Direct solar reduction of CO2 to fuel: first prototype results, Ind. Eng. Chem. Res., 41 (8) (2002) 1935-1939.

DOI: 10.1021/ie010871x

Google Scholar

[13] M. Rakowski Dubois, and D. L. Dubois, Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation, Acc. Chem. Res., 42 (12) (2009) 1974-1982.

DOI: 10.1021/ar900110c

Google Scholar

[14] R. Jensen, and J. Lyman, Solar conversion of CO2 to fuel, Proceedings of the 4th International Conference on Greenhouse Gas Control Technology, 1998, Aug 30-Sept 2 (Interlaken, Switzerland).

Google Scholar

[15] C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today, 115 (2006) 2-32.

DOI: 10.1016/j.cattod.2006.02.029

Google Scholar

[16] G. Centi, and S. Perathoner, CO2-based energy vectors for the storage of solar energy, Greenhouse Gas Sci. Technol., 1 (2011) 21.

DOI: 10.1002/ghg3.3

Google Scholar

[17] G. A. Olah, A. Goeppert, and G. K. S. Prakash, Beyond oil and gas: the methanol economy, Book, Weinhein, Wiley-VCH, 2006.

Google Scholar

[18] I. Ganesh, Conversion of carbon dioxide to methanol using solar energy, Cur. Sci., 101 (6) (2011) 731-733.

Google Scholar

[19] I. Ganesh, Conversion of carbon dioxide to methanol using solar energy-a brief review, Mater. Sci. Appl., 2 (2011) 1407-1415.

DOI: 10.4236/msa.2011.210190

Google Scholar

[20] E. S. Rubin, C. Chen, and A. B. Rao, Cost and performance of fossil fuel power plants with CO2 capture and storage, Energy Policy, 35 (9) (2007) 4444-4454.

DOI: 10.1016/j.enpol.2007.03.009

Google Scholar

[21] Z. Jiang, T. Xiao, V. L. Kuznetsov, and P. P. Edwards, Turning carbon dioxide into fuel, Phil. Trans. R. Soc, 368 (A) (2010) 3343.

DOI: 10.1098/rsta.2010.0119

Google Scholar

[22] M. Peters, T. Mueller, and W. Leitner, CO2: from waste to value, Tce 813 (2009) 46.

Google Scholar

[23] M. Aresta, Carbon dioxide as chemical feedstock, Book, Wiley-VCH, Weinheim, 2010.

Google Scholar

[24] M. Aresta, and A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges, Dalton Trans., (2007) 2975.

DOI: 10.1039/b700658f

Google Scholar

[25] G. Centi, and S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal Today 148 (3-4) (2009) 191.

DOI: 10.1016/j.cattod.2009.07.075

Google Scholar

[26] K. Hoekman, A. Broch, C. Robbins, and R. Purcell, CO2 recycling by reaction with renewably-generated hydrogen, Int. J. Greenhouse Gas Control, 4 (2010) 44.

DOI: 10.1016/j.ijggc.2009.09.012

Google Scholar

[27] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, and Y. Sun, A short review of catalysis for CO2 conversion, Catal Today 148 (3-4) (2009) 221.

DOI: 10.1016/j.cattod.2009.08.015

Google Scholar

[28] Y. P. Patil, P. J. Tambade, S. R. Jagtap, and B. M. Bhanage, Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals, Front. Chem. Eng. China, 4 (2) (2010) 213.

DOI: 10.1007/s11705-009-0227-0

Google Scholar

[29] T. Sakakura, J.-C. Choi, and H. Yasuda, Transformation of carbon dioxide, Chem. Rev., 107 (6) (2007) 2365.

Google Scholar

[30] M. Schaefer, F. Behrendt, and T. Hammer, Evaluation of strategies for the subsequent use of CO2, Front. Chem. Eng. China, 4 (2) (2010) 172.

DOI: 10.1007/s11705-009-0236-z

Google Scholar

[31] M.-J. Choi, and D.-H. Cho1, Review: research activities on the utilization of carbon dioxide in Korea, Clean, 36 (5-6) (2008) 426.

Google Scholar

[32] K. W. J. Frese, S. C. Leach, and D. P. Summers, Electrochemical reduction of aqueous carbon dioxide to methanol, U.S. Patent No. 4,609,441, 2nd September, 1986.

Google Scholar

[33] S. T. Hussain, M. M. Muhammad, and H. U. Rehman, Novel process and catalyst for carbon dioxide conversion to energy generating products, U.S. Patent 2007, Application number: 11/751,026 (20th May), p. Publication number: US 2008/0287555 A1.

Google Scholar

[34] S. Inoue, H. Koinuma, and T. Tsuruta, Copolymerization of carbon dioxide and epoxide with organometallic compounds, Makromol. Chem., 130 (1969) 210-220.

Google Scholar

[35] F. Li, C. Xia, L. Xu, W. Sun, and G. Chen, A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides, Chem. Commun., (2003) 2042-2043.

DOI: 10.1039/b305617a

Google Scholar

[36] J. Peng, and Y. Deng, Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids, New J. Chem., 25 (2001) 639-641.

DOI: 10.1039/b008923k

Google Scholar

[37] K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida, K. Kaneda, Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides, J. Am. Chem. Soc., 121 (1999) 4526-4527.

DOI: 10.1021/ja9902165

Google Scholar

[38] H. Yasuda, L.-N. He, and T. Sakakura, Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride, J. Catal., 209 (2002) 547-550.

DOI: 10.1006/jcat.2002.3662

Google Scholar

[39] R. L. Paddock, and S. T. Nguyen, Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides, J. Am. Chem. Soc., 123 (2001) 11498-11499.

DOI: 10.1021/ja0164677

Google Scholar

[40] X. -B. Lu, R. He, and C.-X. Bai, Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst, J. Mol. Catal. A: Chem., 186 (2002) 1-11.

DOI: 10.1016/s1381-1169(01)00442-3

Google Scholar

[41] M. Tu, and R. J. Davis, Cycloaddition of CO2 to Epoxides over Solid Base Catalysts, J. Catal., 199 (2001) 85-91.

DOI: 10.1006/jcat.2000.3145

Google Scholar

[42] P. Tascedda, M. Weidmann, E. Dinjus, and E. Dunach, Nickel-catalyzed electrochemical carboxylation of epoxides: mechanistic aspects, Appl. Organomet. Chem., 15 (2001) 141-144.

DOI: 10.1002/1099-0739(200102)15:2<141::aid-aoc140>3.0.co;2-f

Google Scholar

[43] T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara, M. Yoshihara, T. Maeshima, Magnesium oxide-catalyzed reaction of carbon dioxide with an epoxide with retention of stereochemistry, Chem. Commun., (1997) 1129-1130.

DOI: 10.1039/a608102i

Google Scholar

[44] D. J. Darensbourg, R. M. Mackiewicz, and D. R. Billodeaux, Pressure Dependence of the Carbon Dioxide/Cyclohexene Oxide Coupling Reaction Catalyzed by Chromium Salen Complexes. Optimization of the Comonomer-Alternating Enchainment Pathway, Organometallics, 24 (2005) 144-148.

DOI: 10.1021/om049454l

Google Scholar

[45] D. J. Darensbourg, C. C. Fang, and J. L. Rodgers, Catalytic coupling of carbon dioxide and 2,3-Epoxy-1,2,3,4-tetrahydronaphthalene in the presence of a (Salen)CrIIICl derivative, Organometallics, 23 (2004) 924-927.

DOI: 10.1021/om034278m

Google Scholar

[46] S. -W. Chen, R. B. Kawthekar, and G. -J. Kim, Efficient catalytic synthesis of optically active cyclic carbonates via coupling reaction of epoxides and carbon dioxide, Tetrahedron Lett., 48 (2007) 297-300.

DOI: 10.1016/j.tetlet.2006.11.014

Google Scholar

[47] M. Aresta, A. Dibenedetto, C. Dileo, I. Tommasi, and E. Amodio, A first synthesis of a cyclic carbonate from a ketal in supercritical CO2, J. Supercrit. Fluids, 25 (2003) 177.

DOI: 10.1016/s0896-8446(02)00095-5

Google Scholar

[48] D. J. Darensbourg, R. M. Mackiewicz, A. L. Phelps, D. R. Billodeaux, Copolymerization of CO2 and epoxides catalyzed by metal salen complexes, Acc. Chem. Res., 37 (2004) 836-844.

DOI: 10.1021/ar030240u

Google Scholar

[49] T. Bok, E. K. Noh, and B. Y. Lee, Coupling reaction of CO2 with epoxides by binary catalytic system of Lewis acids and onium salts, Bull. Korean Chem. Soc., 27 (2006) 1171-1174.

DOI: 10.5012/bkcs.2006.27.8.1171

Google Scholar

[50] C. Hongfa, J. Tian, J. Andreatta, D. J. Darensbourg, and D. E. Bergbreiter, A phase separable polycarbonate polymerization catalyst, Chem. Commun., (2008) 975-977.

DOI: 10.1039/b711861a

Google Scholar

[51] D. J. Darensbourg, A. Horn, Jr., and A. I. Moncada, A facile catalytic synthesis of trimethylene carbonate from trimethylene oxide and carbon dioxide, Green Chem., 12 (2010) 1376-1379.

DOI: 10.1039/c0gc00136h

Google Scholar

[52] D. J. Darensbourg, P. Ganguly, and W. Choi, Metal salen derivatives as catalysts for the alternating copolymerization of oxetanes and carbon dioxide to afford polycarbonates, Inorg. Chem., 45 (2006) 3831-3833.

DOI: 10.1021/ic052109j

Google Scholar

[53] T. Bok, H. Yun, and B.Y. Lee, Bimetallic fluorine-substituted anilido-aldimine zinc complexes for CO2/(cyclohexene oxide) copolymerization, Inorg. Chem., 45 (2006) 4228-4237.

DOI: 10.1021/ic060060r

Google Scholar

[54] M. R. Kember, A. J. P. White, and C. K. Williams, Di- and tri-zinc catalysts for the low-pressure copolymerization of CO2 and cyclohexene oxide, Inorg. Chem., 48 (19) (2009) 9535-9542.

DOI: 10.1021/ic901109e

Google Scholar

[55] D. J. Darensbourg, and S. B. Fitch, (Tetramethyltetraazaannulene)chromium chloride: a highly active catalyst for the alternating copolymerization of epoxides and carbon dioxide, Inorg. Chem. 46 (2007) 5474-5476.

DOI: 10.1021/ic7007842

Google Scholar

[56] D. J. Darensbourg, J. R. Wildeson, J. C. Yarbrough, J. H. Reibenspies, Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts: lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc phenoxides, J. Am. Chem. Soc., 122 (50) (2000) 12487-12496.

DOI: 10.1021/ja002855h

Google Scholar

[57] M. Cheng, D. R. Moore, J. J. Reczek, B. M. Chamberlain, E. B. Lobkovsky, G. W. Coates, Single-site β-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity, J. Am. Chem. Soc., 123 (2001) 8738-8749.

DOI: 10.1021/ja003850n

Google Scholar

[58] C. T. Cohen, T. Chu, and G. W. Coates, Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity, J. Am. Chem. Soc., 127 (2005) 10869-10878.

DOI: 10.1021/ja051744l

Google Scholar

[59] D. J. Darensbourg, and R. M. Mackiewicz, Role of the cocatalyst in the copolymerization of CO2 and cyclohexene oxide utilizing chromium salen complexes, J. Am. Chem. Soc., 127 (2005) 14026-14038.

DOI: 10.1021/ja053544f

Google Scholar

[60] E. K. Noh, S. J. Na,; S. S, S.-W. Kim, and B. Y. Lee, Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization, J. Am. Chem. Soc., 129 (2007) 8082-8083.

DOI: 10.1021/ja071290n

Google Scholar

[61] B. Y. Lee, H. Y. Kwon, S. Y. Lee, S. J. Na, S. -i. Han, H. Yun, H. Lee, Y. -W. Park, Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization, J. Am. Chem. Soc., 127 (2005) 3031-3037.

DOI: 10.1021/ja0435135

Google Scholar

[62] L. Shi, X. -B. Lu, R. Zhang, X. -J. Peng, C. -Q. Zhang, J. -F. Li, and X. -M. Peng, Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions, Macromolecules, 39 (2006) 5679-5685.

DOI: 10.1021/ma060290p

Google Scholar

[63] H. Sugimoto, and K. Kuroda, The cobalt porphyrin-lewis base system: a highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions, Macromolecules, 41 (2008) 312-317.

DOI: 10.1021/ma702354s

Google Scholar

[64] S. Mang, A. I. Cooper, M. E. Colclough, N. Chauhan, and A. B. Holmes, Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst, Macromolecules, 33 (2000) 303-308.

DOI: 10.1021/ma991162m

Google Scholar

[65] R. Eberhardt, M. Allmendinger, G. A. Luinstra, and B. Rieger, The ethylsulfinate ligand: a highly efficient initiating group for the zinc β-diiminate catalyzed copolymerization reaction of CO2 and epoxides, Organometallics, 22 (2003) 211-214.

DOI: 10.1021/om020734f

Google Scholar

[66] M. F. Pilz, C. Limberg, B. B. Lazarov, K. C. Hultzsch, B. Ziemer, Dinuclear zinc complexes based on parallel β-diiminato binding sites: syntheses, structures, and properties as CO2/epoxide copolymerization catalysts, Organometallics, 26 (2007) 3668-3676.

DOI: 10.1021/om070221e

Google Scholar

[67] C. Koning, J. Wildeson, R. Parton, B. Plum, P. Steeman, and D. J. Darensbourg, Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide, Polymer, 42 (2001) 3995-4004.

DOI: 10.1016/s0032-3861(00)00709-6

Google Scholar

[68] J. Sun, W. Cheng, W. Fan, Y. Wang, Z. Meng, and S. Zhang, Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2, Catal. Today, 148 (2009) 361-367.

DOI: 10.1016/j.cattod.2009.07.070

Google Scholar

[69] J. Sun, S. Zhang, W. Cheng, and J. Ren, Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate, Tetrahedron Lett., 49 (2008) 3588-3591.

DOI: 10.1016/j.tetlet.2008.04.022

Google Scholar

[70] A. Baba, T. Nozaki, and H. Matsuda, Carbonate formation from oxiranes and carbon dioxide catalyzed by organotin halide-tetraalkylphosphonium halide complexes, Bull. Chem. Soc. Jpn., 60 (1987) 1552-1554.

DOI: 10.1246/bcsj.60.1552

Google Scholar

[71] H. Matsuda, A. Ninagawa, and R. Nomura, Reaction of carbon dioxide with epoxides in the presence of pentavalent organoantimony compounds, Chem. Lett., (1979) 1261-1262.

DOI: 10.1246/cl.1979.1261

Google Scholar

[72] H. S. Kim, J. Y. Bae, J. S. Lee, O. S. Kwon, P. Jelliarko, S. D. Lee, and S. -H. Lee, Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide, J. Catal., 232 (2005) 80-84.

DOI: 10.1016/j.jcat.2005.01.033

Google Scholar

[73] H. S. Kim, J. J. Kim, H. N. Kwon, M. J. Chung, B. G. Lee, and H. G. Jang, Well-defined highly active heterogeneous catalyst system for the coupling reactions of carbon dioxide and epoxides, J. Catal., 205 (2002) 226-229.

DOI: 10.1006/jcat.2001.3444

Google Scholar

[74] J. Sun, S. -I. Fujita, F. Zhao, and M. Arai, A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Appl. Catal., A, 287 (2005) 221-226.

DOI: 10.1016/j.apcata.2005.03.035

Google Scholar

[75] F. Ono, K. Qiao, D. Tomida, and C. Yokoyama, Rapid synthesis of cyclic carbonates from CO2 and epoxides under microwave irradiation with controlled temperature and pressure, J. Mol. Catal. A: Chem., 263 (2007) 223-226.

DOI: 10.1016/j.molcata.2006.08.037

Google Scholar

[76] H. Kisch, R. Millini, and I. J. Wang, Preparation of cyclic carbonates from oxiranes and carbon dioxide in the presence of bifunctional catalysts, Chem. Ber., 119 (1986) 1090-1094.

DOI: 10.1002/chin.198627190

Google Scholar

[77] S. -S. Wu, X. -W. Zhang, W. -L. Dai, S. -F. Yin, W. -S. Li, Y. -Q. Ren, C. -T. Au, ZnBr2-Ph4PI as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide, Appl. Catal., A, 341 (2008) 106-111.

DOI: 10.1016/j.apcata.2008.02.021

Google Scholar

[78] H. Jing, and S. T. Nguyen, SnCl4-organic base: highly efficient catalyst system for coupling reaction of CO2 and epoxides, J. Mol. Catal. A: Chem., 261 (2007) 12-15.

DOI: 10.1016/j.molcata.2006.07.057

Google Scholar

[79] J. -W. Huang, and M. Shi, Chemical fixation of carbon dioxide by NaI/PPh3/PhOH, J. Org. Chem., 68 (2003) 6705-6709.

DOI: 10.1021/jo0348221

Google Scholar

[80] C. R. Gomes, D. M. Ferreira, C. J. L. Constantino, and E. R. P. Gonzalez, Selectivity of the cyclic carbonate formation by fixation of carbon dioxide into epoxides catalyzed by Lewis bases, Tetrahedron Lett., 49 (2008) 6879-6881.

DOI: 10.1016/j.tetlet.2008.09.101

Google Scholar

[81] R. Srivastava, D. Srinivas, and P. Ratnasamy, Synthesis of polycarbonate precursors over titanosilicate molecular sieves, Catal. Lett., 91 (2003) 133-139.

DOI: 10.1023/b:catl.0000006329.37210.fd

Google Scholar

[82] R. Srivastava, D. Srinivas, and P. Ratnasamy, Syntheses of polycarbonate and polyurethane precursors utilizing CO2 over highly efficient, solid as-synthesized MCM-41 catalyst, Tetrahedron Lett., 47 (2006) 4213-4217.

DOI: 10.1016/j.tetlet.2006.04.057

Google Scholar

[83] K. Mori, Y. Mitani, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides, Chem. Commun., 3331-3333.

DOI: 10.1039/b502636a

Google Scholar

[84] W. -L. Dai, S. -F. Yin, R. Guo, S. -L. Luo, X. Du, and C. -T. Au, Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst, Catal. Lett., 136 (2010) 35-44.

DOI: 10.1007/s10562-009-0198-2

Google Scholar

[85] W. J. Kruper, and D. D. Dellar, Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates, J. Org. Chem., 60 (1995) 725-727.

DOI: 10.1021/jo00108a042

Google Scholar

[86] W. -L. Wong, K. -C. Cheung, P. -H. Chan, Z. -Y. Zhou, K. -H. Lee, and K. -Y. Wong, A tricarbonyl rhenium(I) complex with a pendant pyrrolidinium moiety as a robust and recyclable catalyst for chemical fixation of carbon dioxide in ionic liquid, Chem. Commun., (2007) 2175-2177.

DOI: 10.1039/b618423e

Google Scholar

[87] X. Zhang, W. Dai, S. Yin, S. Luo, and C. –T. Au, Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates, Front. Environ. Sci. Eng. China, 3 (2009) 32-37.

DOI: 10.1007/s11783-008-0068-y

Google Scholar

[88] J. Wang, J. Wu, and N. Tang, Synthesis, characterization of a new bicobalt complex [Co2L2(C2H5OH)2Cl2] and application in cyclic carbonate synthesis, Inorg. Chem. Commun., 10 (2007) 1493-1495.

DOI: 10.1016/j.inoche.2007.09.022

Google Scholar

[89] M. Alvaro, C. Baleizao, D. Das, E. Carbonell, and H. Garcia, CO2 fixation using recoverable chromium Salen catalysts: use of ionic liquids as cosolvent or high-surface-area silicates as supports, J. Catal., 228 (2004) 254-258.

DOI: 10.1016/j.jcat.2004.08.022

Google Scholar

[90] X. Zhang, Y. -B. Jia, X. -B. Lu, B. Li, H. Wang, and L. –C. Sun, Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides, Tetrahedron Lett., 49 (2008) 6589-6592.

DOI: 10.1016/j.tetlet.2008.09.035

Google Scholar

[91] X. -B. Lu, Y. -J. Zhang, K. Jin, L. -M. Luo, and H. Wang, Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature, J. Catal., 227 (2004) 537-541.

DOI: 10.1016/j.jcat.2004.07.018

Google Scholar

[92] X. -B. Lu, Y. -J. Zhang, B. Liang, X. Li, and H. Wang, Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bi-functional catalysts. J. Mol. Catal. A: Chem., 210 (2004) 31-34.

DOI: 10.1016/j.molcata.2003.09.010

Google Scholar

[93] H. Zhou, W. -Z. Zhang, C. -H. Liu, J. -P. Qu, and X. -B. Lu, CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides, J. Org. Chem., 73 (2008) 8039-8044.

DOI: 10.1021/jo801457r

Google Scholar

[94] X. -B. Lu, B. Liang, Y. -J. Zhang, Y. -Z. Tian, Y. -M. Wang, C. -X. Bai, H. Wang, and R. Zhang, Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides, J. Am. Chem. Soc., 126 (2004) 3732-3733.

DOI: 10.1021/ja049734s

Google Scholar

[95] X. -B. Lu, J. -H. Xiu, R. He, K. Jin, L. -M. Luo, and X. -J. Feng, Chemical fixation of CO2 to ethylene carbonate under supercritical conditions: continuous and selective, Appl. Catal., A, 275 (2004) 73-78.

DOI: 10.1016/j.apcata.2004.07.022

Google Scholar

[96] R. L. Paddock, and S. T. Nguyen, Chiral (salen) CoIII catalyst for the synthesis of cyclic carbonates, Chem. Commun., (2004) 1622-1623.

DOI: 10.1002/chin.200447113

Google Scholar

[97] T. Chang, H. Jing, L. Jin, and W. Qiu, Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides, J. Mol. Catal. A: Chem., 264 (2007) 241-247.

DOI: 10.1016/j.molcata.2006.08.089

Google Scholar

[98] L. Jin, Y. Huang, H. Jing, T. Chang, and P. Yan, Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides, Tetrahedron: Asymmetry, 19 (2008) 1947-1953.

DOI: 10.1016/j.tetasy.2008.08.001

Google Scholar

[99] P. Yan, and H. Jing, Catalytic asymmetric cycloaddition of carbon dioxide and propylene oxide using novel chiral polymers of BINOL-Salen-cobalt(III) salts, Adv. Synth. Catal., 351 (2009) 1325-1332.

DOI: 10.1002/adsc.200900137

Google Scholar

[100] H. Jing, T. Chang, L. Jin, M. Wu, and W. Qiu, Ruthenium salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides, Catal. Commun., 8 (2007) 1630-1634.

DOI: 10.1016/j.catcom.2006.12.027

Google Scholar

[101] D. Guironnet, I. Göttker-Schnetmann, and S. Mecking, Catalytic polymerization in dense CO2 to controlled microstructure polyethylenes, Macromolecules, 42 (21) (2009) 8157-8164.

DOI: 10.1021/ma901397q

Google Scholar

[102] S. Inoue, H. Koinuma, and T. Tsuruta, Copolymerization of carbon dioxide and epoxide, J. Polym. Sci., Part B, 7 (1969) 287-292.

DOI: 10.1002/pol.1969.110070408

Google Scholar

[103] G. W. Coates, and D. R. Moore, Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: Discovery, reactivity, optimization, and mechanism, Angew. Chem., Int. Ed., 43 (2004) 6618-6639.

DOI: 10.1002/anie.200460442

Google Scholar

[104] D. J. Darensbourg, Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev., 107 (2007) 2388-2410.

DOI: 10.1021/cr068363q

Google Scholar

[105] H. Sugimoto, and S. Inoue, Copolymerization of carbon dioxide and epoxide, J. Polym. Sci., Part A: Polym. Chem., 42 (2004) 5561-5573.

DOI: 10.1002/pola.20319

Google Scholar

[106] K. Nozaki, Asymmetric catalytic synthesis of polyketones and polycarbonates, Pure Appl. Chem., 76 (2004) 541-546.

DOI: 10.1351/pac200476030541

Google Scholar

[107] D. R. Moore, M. Cheng, E. B. Lobkovsky, and G. W. Coates, Electronic and steric effects on catalysts for CO2/epoxide polymerization: subtle modifications resulting in superior activities, Angew. Chem., Int. Ed., 41 (2002) 2599-2602.

DOI: 10.1002/1521-3773(20020715)41:14<2599::aid-anie2599>3.0.co;2-n

Google Scholar

[108] D. R. Moore, M. Cheng, E. B. Lobkovsky, and G. W. Coates, Mechanism of the alternating copolymerization of epoxides and CO2 using β-diiminate zinc catalysts: Evidence for a bimetallic epoxide enchainment, J. Am. Chem. Soc., 125 (2003) 11911-11924.

DOI: 10.1021/ja030085e

Google Scholar

[109] D. J. Darensbourg, and J. C. Yarbrough, Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, Using a chiral Salen chromium chloride catalyst, J. Am. Chem. Soc., 124 (2002) 6335-6342.

DOI: 10.1021/ja012714v

Google Scholar

[110] H. Zhou, W. -Z. Zhang, Y. -M. Wang, J. -P. Qu, and X. -B. Lu, N-heterocyclic carbene functionalized polymer for reversible fixation-release of CO2, Macromolecules, 42 (2009) 5419-5421.

DOI: 10.1021/ma901109j

Google Scholar

[111] B. Schaffner, F. Schaffner, S. P. Verevkin, and A. Borner, Organic carbonates as solvents in synthesis and catalysis, Chem. Rev., 110 (8) (2010) 4554-4581.

DOI: 10.1002/chin.201046256

Google Scholar

[112] Z. Yu, L. Xu, Y. Wei, Y. Wang, Y. He, Q. Xia, X. Zhang, and Z. Liu, A new route for the synthesis of propylene oxide from bio-glycerol derivated propylene glycol, Chem. Commun., 14 (26) (2009) 3934-3936.

DOI: 10.1039/b907530e

Google Scholar

[113] S. Chen, G. -R. Qi, Z. –J. Hua, and H. -Q. Yan, J. Polym. Sci. Part A: Polym. Chem., 42 (2004) 5284.

Google Scholar

[114] P. Ratnasamy, and D. Srinivas, Chemicals from carbon dioxide, Handbook of Heterogeneous Catalysis, G. Ertl, H. Knoezinger, F. Schueth, J. Weitkamp (eds.), 2nd edn., Wiley-VCH, Germany, (2008), p.3717.

DOI: 10.1002/9783527610044.hetcat0192

Google Scholar

[115] J. Melendez, M. North, and R. Pasquale, Synthesis of cyclic carbonates from atmospheric pressure carbon dioxide using exceptionally active aluminium(salen) complexes as catalysts, Eur. J. Inorg. Chem., (2007) 3323-3326.

DOI: 10.1002/ejic.200700521

Google Scholar

[116] M. North, and R. Pasquale, Mechanism of cyclic carbonate synthesis from epoxides and CO2, Angew. Chem., Int. Ed., 48 (2009) 2946-2948.

DOI: 10.1002/anie.200805451

Google Scholar

[117] D. J. Darensbourg, and M. W. Holtcamp, Catalysts for the reactions of epoxides and carbon dioxide, Coord. Chem. Rev., 153 (1996) 155-174.

Google Scholar

[118] M. North, R. Pasquale, and C. Young, Synthesis of cyclic carbonates from epoxides and CO2, Green Chem., 12 (2010) 1514-1539.

DOI: 10.1039/c0gc00065e

Google Scholar

[119] E. N. Jacobsen, Asymmetric catalysis of epoxide ring-opening reactions, Acc. Chem. Res., 33 (2000) 421-431.

DOI: 10.1021/ar960061v

Google Scholar

[120] G. A. Luinstra, Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties, Polym. Rev., 48 (2008) 192-219.

DOI: 10.1080/15583720701834240

Google Scholar

[121] S. Sujith, J. K. Min, J. E. Seong, S. J. Na, and B. Y. Lee, A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization, Angew. Chem. Int. Ed. Engl., 47 (2008) 7306-7309.

DOI: 10.1002/anie.200801852

Google Scholar

[122] A. Cyriac, S. H. Lee, J. K. Varghese, E. S. Park, J. H. Park, and B. Y. Lee, Immortal CO2/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers, Macromolecules, 43 (2010) 7398-7401.

DOI: 10.1021/ma101259k

Google Scholar

[123] D. J. Darensbourg, M. W. Holtcamp, G. E. Struck, M. S. Zimmer, S. A. Niezgoda, P. Rainey, J. B. Robertson, J. D. Draper, J. H. Reibenspies, Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide, J. Am. Chem. Soc., 121 (1999) 107-116.

DOI: 10.1021/ja9826284

Google Scholar

[124] D. J. Darensbourg, J. R. Wildeson, J. C. Yarbrough, and J. H. Reibenspies, Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts: lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc phenoxides, J. Am. Chem. Soc., 122 (2000) 12487-12496.

DOI: 10.1021/ja002855h

Google Scholar

[125] S. D. Allen, D. R. Moore, E. B. Lobkovsky, and G. W. Coates, High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide, J. Am. Chem. Soc., 124 (2002) 14284-14285.

DOI: 10.1021/ja028071g

Google Scholar

[126] M. Cheng, E. B. Lobkovsky, and G. W. Coates, Catalytic reactions involving C1 feedstocks: new high-activity Zn(II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides, J. Am. Chem. Soc., 120 (1998) 11018-11019.

DOI: 10.1021/ja982601k

Google Scholar

[127] Z. Qin, C. M. Thomas, S. Lee, and G. W. Coates, Cobalt-based complexes for the copolymerization of propylene oxide and CO2: Active and for polycarbonate synthesis. Angew. Chem., Int. Ed., 42 (2003) 5484-5487.

DOI: 10.1002/anie.200352605

Google Scholar

[128] Y. Xiao, Z. Wang, and K. Ding, Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts, Chem. Eur. J., 11 (2005) 3668-3678.

DOI: 10.1002/chem.200401159

Google Scholar

[129] Y. Xiao, Z. Wang, and K. Ding, Intramolecularly dinuclear magnesium complex catalyzed copolymerization of cyclohexene oxide with CO2 under ambient CO2 pressure: kinetics and mechanism, Macromolecules, 39 (2006) 128-137.

DOI: 10.1021/ma051859+

Google Scholar

[130] H. Sugimoto, H. Ohshima, and S. Inoue, Alternating copolymerization of carbon dioxide and epoxide by manganese porphyrin: the first example of polycarbonate synthesis from 1-atm carbon dioxide. J. Polym. Sci., Part A: Polym. Chem., 41 (2003) 3549-3555.

DOI: 10.1002/pola.10835

Google Scholar

[131] N. H. Pilkington, and R. Robson, Complexes of binucleating ligands, III. novel complexes of a macrocyclic binucleating ligand, Aust. J. Chem., 23 (1970) 2225-2236.

DOI: 10.1071/ch9702225

Google Scholar

[132] B. F. Hoskins, R. Robson, and G.A. Williams, Complexes of binucleating ligands, VIII. the preparation, structure and properties of some mixed valence cobalt(II)-cobalt(III) complexes of a macrocyclic binucleating ligand, Inorg. Chim. Acta, 16 (1976) 121-133.

DOI: 10.1016/s0020-1693(00)91701-8

Google Scholar

[133] S. K. Mandal, L. K. Thompson, M. J. Newlands, E. J. Gabe, and K. Nag, Structural and magnetic studies on macrocyclic dicopper(II) complexes: influence of electron-withdrawing axial ligands on spin exchange, Inorg. Chem., 29 (1990) 1324-1327.

DOI: 10.1021/ic00332a007

Google Scholar

[134] S. K. Mandal, L. K. Thompson, M. J. Newlands, and E. J. Gabe, Structural, magnetic, and electrochemical studies on macrocyclic dicopper(II) complexes with varying chelate ring size, Inorg. Chem., 28 (1989) 3707-3713.

DOI: 10.1021/ic00318a020

Google Scholar

[135] A. J. Atkins, D. Black, A. J. Blake, A. Marin-Becerra, S. Parsons, L. Ruiz-Ramirez, and M. Schroder, Schiff-base compartmental macrocyclic complexes, Chem. Commun., (1996) 457-464.

DOI: 10.1039/cc9960000457

Google Scholar

[136] H. Okawa, H. Furutachi, and D. E. Fenton, Heterodinuclear metal complexes of phenol-based compartmental macrocycles, Coord. Chem. Rev., 174 (1998) 51-75.

DOI: 10.1016/s0010-8545(97)00082-9

Google Scholar

[137] A. J. Atkins, D. Black, R. L. Finn, A. Marin-Becerra, A. J. Blake, L. Ruiz-Ramirez, W. -S. Li, and M. Schroeder, Synthesis and structure of mononuclear and binuclear zinc(II) compartmental macrocyclic complexes, Dalton Trans., (2003) 1730-1737.

DOI: 10.1039/b210936k

Google Scholar

[138] M. R. Kember, P. D. Knight, P. T. R. Reung, and C. K. Williams, Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure, Angew. Chem., Int. Ed., 48 (2009) 931-933.

DOI: 10.1002/anie.200803896

Google Scholar

[139] M. W. J. Van, R. Duchateau, C. E. Koning, and G.-J. M. Gruter, Unexpected side reactions and chain transfer for zinc-catalyzed copolymerization of cyclohexene oxide and carbon dioxide, Macromolecules, 38 (2005) 7306-7313.

DOI: 10.1021/ma050797k

Google Scholar

[140] A. Dedieu, C. Bo, and F. Ingold, In metal-ligand interactions: from atoms, to clusters, to surfaces, NATO ASI Series; D. Salahub, Ed., Kluwer: Dordrecht, The Netherlands, (1992).

DOI: 10.1007/978-94-011-2822-3_9

Google Scholar

[141] O. R. Allen, S. J. Dalgarno, L. D. Field, P. Jensen, and A. C. Willis, Insertion of CO2 into the Ru-C bonds of cis- and trans-Ru(dmpe)2Me2 (dmpe = Me2PCH2CH2PMe2), Organometallics, 28 (2009) 2385-2390.

DOI: 10.1021/om801184k

Google Scholar

[142] D. J. Darensbourg, C. Ovalles, and M. Pala, Homogeneous catalysts for carbon dioxide/hydrogen activation. Alkyl formate production using anionic ruthenium carbonyl clusters as catalysts, J. Am. Chem. Soc., 105 (1983) 5937-5939.

DOI: 10.1021/ja00356a049

Google Scholar

[143] D. J. Darensbourg, and C. Ovalles, Anionic group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation: the production of alkyl formats, J. Am. Chem. Soc., 106 (1984) 3750-3754.

DOI: 10.1021/ja00325a007

Google Scholar

[144] D. J. Darensbourg, and C. Ovalles, Homogeneous catalytic synthesis of alkyl formats from the reaction of alkyl halides, carbon dioxide, and hydrogen in the presence of anionic Group 6 carbonyl catalysts and sodium salts, J. Am. Chem. Soc., 109 (1987) 3330-3336.

DOI: 10.1021/ja00245a024

Google Scholar

[145] M. Takimoto, Y. Nakamura, K. Kimura, and M. Mori, Highly enantioselective catalytic carbon dioxide incorporation reaction: nickel-catalyzed asymmetric carboxylative cyclization of bis-1,3-dienes, J. Am. Chem. Soc., 126 (2004) 5956-5957.

DOI: 10.1021/ja049506y

Google Scholar

[146] C. M. Williams, J. B. Johnson, and T. Rovis, Nickel-catalyzed reductive carboxylation of styrenes using CO2, J. Am. Chem. Soc., 130 (2008) 14936-14937.

DOI: 10.1021/ja8062925

Google Scholar

[147] J. Takaya, and N. Iwasawa, Hydrocarboxylation of allenes with CO2 catalyzed by silyl pincer-type palladium complex, J. Am. Chem. Soc., 130 (2008) 15254-15255.

DOI: 10.1021/ja806677w

Google Scholar

[148] S. N. Riduan, Y. Zhang, and J. Y. Ying, Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts, Angew. Chem., Int. Ed., 48 (2009) 3322-3325.

DOI: 10.1002/anie.200806058

Google Scholar

[149] I. I. F. Boogaerts, and S. P. Nolan, Carboxylation of C-H bonds using N-heterocyclic carbene gold(I) complexes, J. Am. Chem. Soc., 132 (2010) 8858-8859.

DOI: 10.1021/ja103429q

Google Scholar

[150] P. G. Jessop, F. Joo, and C. -C. Tai, Recent advances in the homogeneous hydrogenation of carbon dioxide, Coord. Chem. Rev., 248 (2004) 2425-2442.

DOI: 10.1016/j.ccr.2004.05.019

Google Scholar

[151] A. D. Getty, C. -C. Tai, J. C. Linehan, P. G. Jessop, M. M. Olmstead, and A. L. Rheingold, Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: a mechanistic investigation using high-pressure NMR spectroscopy, Organometallics, 28 (2009) 5466-5477.

DOI: 10.1021/om900128s

Google Scholar

[152] A. Rokicki, and W. Kuran, The application of carbon dioxide as a direct material for polymer syntheses in polymerization and polycondensation reactions, J. Macromol. Sci., Rev. Macromol. Chem., C21 (1981) 135-186.

Google Scholar

[153] D. C. Webster, Cyclic carbonate functional polymers and their applications, Progre. Org. Coatings, 47 (1) (2003) 77-86.

Google Scholar

[154] D. J. Darensbourg, J. R. Wildeson, S. J. Lewis, and J. C. Yarbrough, Solution and solid-state structural studies of epoxide adducts of cadmium phenoxides: chemistry relevant to epoxide activation for ring-opening reactions, J. Am. Chem. Soc., 124 (2002) 7075-7083.

DOI: 10.1021/ja020184c

Google Scholar

[155] C. Baleizao, and H. Garcia, Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts, Chem. Rev., 106 (2006) 3987-4043.

DOI: 10.1021/cr050973n

Google Scholar

[156] L. Phan, J. R. Andreatta, L. K. Horvey, C. F. Edie, A. –L. Luco, A. Mirchandani, D. J. Darensbourg, and P. G. Jessop, Switchable-polarity solvents prepared with a single liquid component, J. Org. Chem., 73 (1) (2008) 127-132.

DOI: 10.1021/jo7017697

Google Scholar

[157] M. H. Chisholm, and Z. Zhou, New generation polymers: the role of metal alkoxides as catalysts in the production of polyoxygenates, J. Mater. Chem., 14 (2004) 3081-3092.

DOI: 10.1039/b405489j

Google Scholar

[158] B. Ochiai, and T. Endo, Carbon dioxide and carbon disulfide as resources for functional polymers. Prog. Polym. Sci., 30 (2005) 183-215.

DOI: 10.1016/j.progpolymsci.2005.01.005

Google Scholar

[159] K. Nakano, N. Kosaka, T. Hiyama, and K. Nozaki, Metal-catalyzed synthesis of stereoregular polyketones, polyesters, and polycarbonates, Dalton Trans., (2003) 4039-4050.

DOI: 10.1039/b304690g

Google Scholar

[160] D. J. Darensbourg, and A. I. Moncada, Mechanistic insight into the initiation step of the coupling reaction of oxetane or epoxides and CO2 catalyzed by (salen)CrX complexes, Inorg. Chem., 47 (2008) 10000-10008.

DOI: 10.1021/ic801231p

Google Scholar

[161] D. J. Darensbourg, A. I. Moncada, W. Choi, and J. H. Reibenspies, Mechanistic studies of the copolymerization reaction of oxetane and carbon dioxide to provide aliphatic polycarbonates catalyzed by (Salen)CrX complexes, J. Am. Chem. Soc., 130 (2008) 6523-6533.

DOI: 10.1021/ja800302c

Google Scholar

[162] D. J. Darensbourg, and S. B. Fitch, Copolymerization of epoxides and carbon dioxide: evidence supporting the lack of dual catalysis at a single metal site, Inorg. Chem., 48 (2009) 8668-8677.

DOI: 10.1021/ic900780a

Google Scholar

[163] B. L. Seal, T. C. Otero, and A. Panitch, Polymeric biomaterials for tissue and organ regeneration, Mater. Sci. Eng., R, R34 (2001) 147-230.

Google Scholar

[164] S. Harder, From limestone to catalysis: application of calcium compounds as homogeneous catalysts, Chem. Rev., 110 (2010) 3852-3876.

DOI: 10.1021/cr9003659

Google Scholar

[165] D. J. Darensbourg, W. Choi, O. Karroonnirun, and N. Bhuvanesh, Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals: production of poly(lactide), poly(trimethylene carbonate), and their copolymers, Macromolecules, 41 (2008) 3493-3502.

DOI: 10.1021/ma800078t

Google Scholar

[166] A. -P. Zeng, and H. Biebl, Bulk chemicals from biotechnology: The case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng./Biotechnol., 74 (2002) 239-259.

DOI: 10.1007/3-540-45736-4_11

Google Scholar

[167] C. E. Nakamura, and G. M. Whited, Metabolic engineering for the microbial production of 1,3-propanediol, Curr. Opin. Biotechnol., 14 (2003) 454-459.

Google Scholar

[168] W. -M. Ren, Z. -W. Liu, Y. -Q. Wen, R. Zhang, and X. -B. Lu, Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst, J. Am. Chem. Soc., 131 (32) (2009) 11509-11518.

DOI: 10.1021/ja9033999

Google Scholar

[169] G. -P. Wu, S. -H. Wei, X. -B. Lu, W. -M. Ren, and D. J. Darensbourg, Highly selective synthesis of CO2 copolymer from styrene oxide, Macromolecules, 43 (21) (2010) 9202-9204.

DOI: 10.1021/ma1021456

Google Scholar

[170] O. V. Krylov, and A. K. Mamedov, Heterogeneous catalytic reactions of carbon dioxide, Russian Chem. Rev, 64 (9) (1995) 877.

DOI: 10.1070/rc1995v064n09abeh000182

Google Scholar

[171] P. Ratnasamy, and D. Srinivas, Chemicals from Carbon Dioxide; editors: G. Ertl, H. Knoezinger, F. Schueth, J. Weitkamp, Handbook of Heterogeneous Catalysis; 2nd edn., Wiley-VCH, Germany, (2008), p.3717−3732.

Google Scholar

[172] P. Tundo, and M. Selva, The chemistry of dimethyl carbonate, Acc. Chem. Res., 35 (2002) 706-716.

DOI: 10.1021/ar010076f

Google Scholar

[173] D. Chaturvedi, and S. Ray, Versatile use of carbon dioxide in the synthesis of carbamates, Monatsh. Chem., 137 (2006) 127-145.

DOI: 10.1007/s00706-005-0423-7

Google Scholar

[174] T. Toda, Reactions of carbon dioxide with α-bromoacylophenones: formation of oxazolidone derivatives, Chem. Lett., (1977) 957-958.

DOI: 10.1246/cl.1977.957

Google Scholar

[175] F. Kojima, T. Aida, and S. Inoue, Fixation and activation of carbon dioxide on aluminum porphyrin: catalytic formation of a carbamic ester from carbon dioxide, amine, and epoxide, J. Am. Chem. Soc., 1986, 108 (3), 391-395.

DOI: 10.1021/ja00263a008

Google Scholar

[176] M. Aresta, and E. Quaranta, Role of the macrocyclic polyether in the synthesis of alkylcarbamate esters from primary amines, carbon dioxide and alkyl halides in the presence of crown ethers, Tetrahedron, 48 (1992) 1515-1530.

DOI: 10.1016/s0040-4020(01)92239-2

Google Scholar

[177] W. D. McGhee, Y. Pan, and D. P. Riley, Highly selective generation of urethanes from amines, carbon dioxide and alkyl chlorides, J. Chem. Soc., Chem. Commun., (1994) 699-700.

DOI: 10.1039/c39940000699

Google Scholar

[178] W. D. McGhee, D. P. Riley, M. E. Christ, and K. M. Christ, Palladium-catalyzed generation of O-allylic urethanes and carbonates from amines/alcohols, carbon dioxide, and allylic chlorides, Organometallics, 12 (1993) 1429-1433.

DOI: 10.1021/om00028a069

Google Scholar

[179] K. -I. Tominaga, and Y. Sasaki, Synthesis of 2-oxazolidinones from CO2 and 1,2-aminoalcohols catalyzed by n-Bu2SnO, Synlett, (2002) 307-309.

DOI: 10.1055/s-2002-19780

Google Scholar

[180] A. Graët, L. Sinault, M. B. Fusaro, A.-L. Vallet, C. Seu, J. L. Kilgore, and M. M. Baum, Reactivity of the nickel (0)−CO2−imine system: new pathway to vicinal diamines, Organometallics, 29 (9) (2010) 1997-2000.

DOI: 10.1021/om900765m

Google Scholar

[181] H. Ochiai, M. Jang, K. Hirano, H. Yorimitsu, and K. Oshima, Nickel-catalyzed carboxylation of organozinc reagents with CO2, Org. Lett., 10 (13) (2008) 2681-2683.

DOI: 10.1021/ol800764u

Google Scholar

[182] M. Aresta, C. F. Nobile, V. G. Albano, E. Forni, and M. Manassero, New nickel-carbon dioxide complex: synthesis, properties, and crystallographic characterizaiotn of (carbon dioxide)bis(tricyclohexylphosphine) nickel, J. Chem. Soc., Chem. Commun., (1975) 636-637.

DOI: 10.1039/c39750000636

Google Scholar

[183] K. Biswas, O. Prieto, P. J. Goldsmith, and S. Woodward, Remarkably stable (Me3Al)2·DABCO and stereo selective nickel catalyzed AlR3 (R = Me, Et) additions to aldehydes, Angew. Chem., Int. Ed., 44 (2005) 2232-2234.

DOI: 10.1002/anie.200462569

Google Scholar

[184] A. Krasovskiy, and P. Knochel, A LiCl-mediated Br/Mg exchange reaction for the preparation of functionalized aryl- and heteroaryl magnesium compounds from organic bromides, Angew. Chem., Int. Ed., 43 (2004) 3333-3336.

DOI: 10.1002/anie.200454084

Google Scholar

[185] C. S. Yeung, and V. M. Dong, Beyond Aresta's complex: Ni- and Pd-catalyzed organozinc coupling with CO2, J. Am. Chem. Soc., 130 (25) (2008) 7826-7827.

DOI: 10.1021/ja803435w

Google Scholar

[186] G. W. Ebert, W. L. Juda, R. H. Kosakowski, B. Ma, L. Dong, K. E. Cummings, M. V. B. Phelps, A. E. Mostafa, and J. Luo, Carboxylation and esterification of functionalized arylcopper reagents, J. Org. Chem., 70 (2005) 4314-4317.

DOI: 10.1021/jo047731s

Google Scholar

[187] K. Ukai, M. Aoki, J. Takaya, and N. Iwasawa, Rhodium(I)-catalyzed carboxylation of aryl- and alkenylboronic esters with CO2, J. Am. Chem. Soc., 128 (2006) 8706-8707.

DOI: 10.1021/ja061232m

Google Scholar

[188] X. Yin, and J. R. Moss, Recent developments in the activation of carbon dioxide by metal complexes, Coord. Chem. Rev., 181 (1999) 27-59.

Google Scholar

[189] G. A. Olah, B. Toeroek, J. P. Joschek, I. Bucsi, P. M. Esteves, G. Rasul, and G. K. S. Prakash, Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al2Cl6/Al system, J. Am. Chem. Soc., 124 (2002) 11379-11391.

DOI: 10.1021/ja020787o

Google Scholar

[190] S. Derien, J. C. Clinet, E. Dunach, and J. Perichon, Activation of carbon dioxide: nickel-catalyzed electrochemical carboxylation of diynes, J. Org. Chem., 58 (1993) 2578-2588.

DOI: 10.1021/jo00061a038

Google Scholar

[191] P. W. Jolly, K. Jonas, C. Krueger, and Y. H. Tsay, Preparation, reactions, and structure of bis[bis(tricyclohexylphosphine)nickel] dinitrogen, {[(C6H11)3P]2Ni}2N2, J. Organometal. Chem., 33 (1971) 109-122.

DOI: 10.1016/s0022-328x(00)80809-8

Google Scholar

[192] T. Yu, T. Yamada, G. C. Gaviola, and R. G. Weiss, Carbon dioxide and molecular nitrogen as switches between ionic and uncharged room-temperature liquids comprised of amidines and chiral amino alcohols, Chem. Mater., 20 (16) (2008) 5337-5344.

DOI: 10.1021/cm801169c

Google Scholar

[193] O. R. Allen, S. J. Dalgarno, and L. D. Field, Reductive disproportionation of carbon dioxide at an Iron(II) center, Organometallics, 27 (14) (2008) 3328-3330.

DOI: 10.1021/om800408w

Google Scholar

[194] M. M. T. Khan, S. B. Halligudi, and S. Shukla, Reduction of carbon dioxide by molecular hydrogen to formic acid and formaldehyde and their decomposition to carbon monoxide and water, J. Mol. Catal., 57 (1989) 47-60.

DOI: 10.1016/0304-5102(89)80126-9

Google Scholar

[195] K. Leung, I. M. B. Nielsen, N. Sai, C. Medforth, and J. A. Shelnutt, Cobalt−porphyrin catalyzed electrochemical reduction of carbon dioxide in water, 2. Mechanism from first principles, J. Phys. Chem. A, 114 (37) (2010) 10174-10184.

DOI: 10.1021/jp1012335

Google Scholar

[196] I. M. B. Nielsen, and K. Leung, Cobalt−porphyrin catalyzed electrochemical reduction of carbon dioxide in water, 1. a density functional study of intermediates, J. Phys. Chem. A, 114 (37) (2010) 10166-10173.

DOI: 10.1021/jp101180m

Google Scholar

[197] J. M. Smieja, and C. P. Kubiak, Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies, Inorg. Chem, 49 (20) (2010) 9283-9289.

DOI: 10.1021/ic1008363

Google Scholar

[198] B. Sarkar, B. J. Liaw, C. S. Fang, and C. W. Liu, Phosphonate- and ester-substituted 2-cyanoethylene-1,1-dithiolateclusters of zinc: aerial CO2 fixation and unusual binding patterns, Inorg. Chem., 47 (7) (2008) 2777-2785.

DOI: 10.1021/ic702126k

Google Scholar

[199] C. S. Chen, J. H. Wu, and T. W. Lai, Carbon dioxide hydrogenation on Cu nanoparticles, The Journal of Physical Chemistry C, 114 (35) (2010) 15021-15028.

DOI: 10.1021/jp104890c

Google Scholar

[200] S. F. Li, and Z. X. Guo, CO2 activation and total reduction on titanium (0001) surface, J. Phys. Chem. C, 114 (26) (2010) 11456-11459.

DOI: 10.1021/jp100147g

Google Scholar

[201] S. Paulussen, B. Verheyde, X. Tu, C. D. Bie, T. Martens, D. Petrovic, A. Bogaerts, and B. Sels, Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges, Plasma Sources Sci. Tech., 19 (3) (2010) 034015.

DOI: 10.1088/0963-0252/19/3/034015

Google Scholar

[202] M. Noji, K. Suzuki, T. Tashiro, M. Suzuki, K. Harada, K. Masuda, and Y. Kidani, Syntheses and antitumor activities of 1R,2R-cyclohexanediamine platinum(II) complexes containing dicarboxylates, Chem. Pharm. Bull., 35 (1987) 221-228.

DOI: 10.1248/cpb.35.221

Google Scholar

[203] W. C. Neikam, Electrolytic preparation of organic carbonates, Sun Oil Co., (1967) p.3.

Google Scholar

[204] S. Gambino, A. Gennaro, G. Filardo, G. Silvestri, and E. Vianello, Electrochemical carboxylation of styrene, J. Electrochem. Soc., 134 (1987) 2172-2175.

DOI: 10.1149/1.2100846

Google Scholar

[205] S. Derien, J. C. Clinet, E. Dunach, and J. Perichon, Electrochemical incorporation of carbon dioxide into alkenes by nickel complexes, Tetrahedron, 48 (1992) 5235-5248.

DOI: 10.1002/chin.199241087

Google Scholar

[206] D. Ballivet-Tkatchenko, J. -C. Folest, and J. Tanji, Electrocatalytic reduction of CO2 for the selective carboxylation of olefins, Appl. Organomet. Chem., 14 (2000) 847-849.

DOI: 10.1002/1099-0739(200012)14:12<847::aid-aoc78>3.0.co;2-7

Google Scholar

[207] H. Senboku, H. Komatsu, Y. Fujimura, and M. Tokuda, Efficient electrochemical dicarboxylation of phenyl -substituted alkenes: Synthesis of 1-phenylalkane-1,2-dicarboxylic acids, Syn. Let., 3 (2001) 418-420.

DOI: 10.1055/s-2001-11417

Google Scholar

[208] G. -Q. Yuan, H. -F. Jiang, C. Lin, and S. -J. Liao, Efficient electrochemical synthesis of 2-arylsuccinic acids from CO2 and aryl-substituted alkenes with nickel as the cathode, Electrochimica Acta, 53 (5) (2008) 2170-2176.

DOI: 10.1016/j.electacta.2007.09.023

Google Scholar

[209] J. -L. Tao, K. -W. Jun, and K. -W. Lee, Co-production of dimethyl ether and methanol from CO2 hydrogenation: development of a stable hybrid catalyst, Appl. Organomet. Chem., 15 (2001) 105-108.

DOI: 10.1002/1099-0739(200102)15:2<105::aid-aoc100>3.0.co;2-b

Google Scholar

[210] S. Wang, D. Mao, X. Guo, G. Wu, and G. Lu, Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts, Catal. Commun., 10 (2009) 1367-1370.

DOI: 10.1016/j.catcom.2009.02.001

Google Scholar

[211] X. An, Y. -Z. Zuo, Q. Zhang, D. -Z. Wang, and J. -F. Wang, Dimethyl Ether Synthesis from CO2 Hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 bifunctional Catalyst, Ind. Eng. Chem. Res., 47 (2008) 6547-6554.

DOI: 10.1021/ie800777t

Google Scholar

[212] J. Erena, R. Garona, J. M. Arandes, A. T. Aguayo, and J. Bilbao, Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst, Catal. Today, 107-108 (2005) 467-473.

DOI: 10.1016/j.cattod.2005.07.116

Google Scholar

[213] G. -X. Qi, J. -H. Fei, X. -M. Zheng, and Z. -Y. Hou, DME synthesis from carbon dioxide and hydrogen over Cu-Mo/HZSM-5, Catal. Lett., 72 (2001) 121-124.

Google Scholar

[214] K. Sun, W. Lu, M. Wang, and X. Xu, Low-temperature synthesis of DME from CO2/H2 over Pd-modified CuO-ZnO-Al2O3-ZrO2/HZSM-5 catalysts, Catal. Commun., 5 (2004) 367-370.

DOI: 10.1016/j.catcom.2004.03.012

Google Scholar

[215] T. Inui, M. Anpo, K. Lzui, S. Yanagida, and T. Yamaguchi, Advances in chemical conversion for mitigating carbon dioxide, Stud. Sur. Sci. Catal., 114 (1998) 19-30.

Google Scholar

[216] G. Menard, and D. W. Stephan, Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane, J. Am. Chem. Soc., 132 (6) (2010) 1796-1797.

DOI: 10.1021/ja9104792

Google Scholar

[217] A. E. Ashley, A.L. Thompson, and D. O'Hare, Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH, Angew. Chem., Int. Ed., 48 (2009) 9839-9843.

DOI: 10.1002/anie.200905466

Google Scholar

[218] R. Obert, and B. C. Dave, Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices, J. Am. Chem. Soc., 121 (51) (1999) 12192-12193.

DOI: 10.1021/ja991899r

Google Scholar

[219] S. J. Geier, and D. W. Stephan, Lutidine/B(C6F5)3: at the boundary of classical and frustrated Lewis pair reactivity, J. Am. Chem. Soc., 131 (2009) 3476-3477.

DOI: 10.1021/ja900572x

Google Scholar

[220] T. Matsuo, and H. Kawaguchi, From carbon dioxide to methane: homogeneous reduction of carbon dioxide with hydrosilanes catalyzed by zirconium-borane complexes, J. Am. Chem. Soc., 128 (2006) 12362-12363.

DOI: 10.1021/ja0647250

Google Scholar

[221] D. Enders, O. Niemeier, and A. Henseler, Organocatalysis by N-heterocyclic carbenes, Chem. Rev., 107 (2007) 5606-5655.

DOI: 10.1021/cr068372z

Google Scholar

[222] N. Marion, S. Diez-Gonzalez, and S. P. Nolan, N-heterocyclic carbenes as organocatalysts, Angew. Chem., Int. Ed., 46 (2007) 2988-3000.

DOI: 10.1002/anie.200603380

Google Scholar

[223] G. A. Olah, Beyond oil and gas: The methanol economy, Angew. Chem., Int. Ed., 44 (2005) 2636-2639.

DOI: 10.1002/anie.200462121

Google Scholar

[224] K. Zeitler, Extending mechanistic routes in heterazolium catalysis – promising concepts for versatile synthetic methods, Angew. Chem., Int. Ed., 44 (2005) 7506-7510.

DOI: 10.1002/anie.200502617

Google Scholar

[225] J. Seayad, P. K. Patra, Y. Zhang, and J. Y. Ying, Organocatalytic synthesis of N-phenylisoxazolidin-5-ones and a one-pot synthesis of β-amino acid esters, Org. Lett., 10 (2008) 953-956.

DOI: 10.1021/ol800003n

Google Scholar

[226] F. T. Wong, P. K. Patra, J. Seayad, Y. Zhang, and J. Ying, N-heterocyclic carbene (NHC)-catalyzed direct amidation of aldehydes with nitroso compounds, Org. Lett., 10 (2008) 2333-2336.

DOI: 10.1021/ol8004276

Google Scholar

[227] Y. Zhang, S. N. Riduan, and J. Y. Ying, Microporous polyisocyanurate and its application in heterogeneous catalysis, Chem. -Eur. J., 15 (2009) 1077-1081.

DOI: 10.1002/chem.200801570

Google Scholar

[228] G. Yong, Y. Zhang, and J. Ying, Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose, Angew. Chem., Int. Ed., 47 (2008) 9345-9348.

DOI: 10.1002/anie.200803207

Google Scholar

[229] H. A. Duong, T. N. Tekavec, A. M. Arif, and J. Louie, Reversible carboxylation of N-heterocyclic carbenes, Chem. Commun., (2004) 112-113.

Google Scholar

[230] A. M. Voutchkova, M. Feliz, E. Clot, O. Eisenstein, and R. H. Crabtree, Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents: synthesis, mechanism, and applications, J. Am. Chem. Soc., 129 (2007) 12834-12846.

DOI: 10.1021/ja0742885

Google Scholar

[231] I. Tommasi, and F. Sorrentino, Utilization of 1,3-dialkylimidazolium-2-carboxylates as CO2-carriers in the presence of Na+ and K+: application in the synthesis of carboxylates, monomethyl carbonate anions and halogen-free ionic liquids, Tetrahedron Lett., 46 (2005) 2141-2145.

DOI: 10.1016/j.tetlet.2005.01.106

Google Scholar

[232] J. -H. Jeoung, and H. Dobbek, Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase, Science, 318 (2007) 1461-1464.

DOI: 10.1126/science.1148481

Google Scholar

[233] A. Parkin, J. Seravalli, K. A. Vincent, S. W. Ragsdale, and F. A. Armstrong, Rapid and efficient electrocatalytic CO2/CO interconversions by carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode, J. Am. Chem. Soc., 129 (2007) 10328-10329.

DOI: 10.1021/ja073643o

Google Scholar

[234] P. M. Zimmerman, A. Paul, Z. Zhang, and C. B. Musgrave, The role of free N-heterocyclic carbene (NHC) in the catalytic dehydrogenation of ammonia borane in the nickel NHC system, Angew. Chem., Int. Ed., 48 (2009) 2201-2205.

DOI: 10.1002/anie.200803211

Google Scholar

[235] P. M. Zimmerman, A. Paul, and C. B. Musgrave, Catalytic dehydrogenation of ammonia borane at Ni monocarbene and dicarbene catalysts, Inorg. Chem., 48 (2009) 5418-5433.

DOI: 10.1021/ic900417z

Google Scholar

[236] L. M. Ellerby, C. R. Nishida, F. Nishida, S. A. Yamanaka, B. Dunn, J. S. Valentine, and J. I. Zink, Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method, Science, 255 (1992) 1113-1115.

DOI: 10.1126/science.1312257

Google Scholar

[237] S. -W. Xu, Y. Lu, J. Li, Z. -Y. Jiang, and H. Wu, Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel, Ind. Eng. Chem. Res., 45 (2006) 4567-4573.

DOI: 10.1021/ie051407l

Google Scholar

[238] P. Liu, Y. Choi, Y. Yang, and M. G. White, Methanol synthesis from H2 and CO2 on a Mo6S8 cluster: a density functional study, J. Phys. Chem. A, 114 (11) (2009) 3888-3895.

Google Scholar

[239] F. W. Chang, M. T. Tsay, and S. P. Liang, Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange, Appl. Catal., A, 209 (2001) 217-227.

DOI: 10.1016/s0926-860x(00)00772-9

Google Scholar

[240] F. -W. Chang, T. -J. Hsiao, and J. -D. Shih, Hydrogenation of CO2 over a rice husk ash supported nickel catalyst prepared by deposition-precipitation, Ind. Eng. Chem. Res., 37 (1998) 3838-3845.

DOI: 10.1021/ie980152r

Google Scholar

[241] G. D. Weatherbee, and C. H. Bartholomew, Hydrogenation of carbon dioxide on Group VIII metals, I. Specific activity of nickel/silica, J. Catal., 68 (1981) 67-76.

DOI: 10.1002/chin.198129171

Google Scholar

[242] T. Kodama, and N. Gokon, Thermochemical cycles for high-temperature solar hydrogen production, ChemInform, 38 (51) (2007) 4048-4077.

DOI: 10.1002/chin.200751267

Google Scholar

[243] C. Agrafiotis, M. Roeb, A. G. Konstandopoulos, L. Nalbandian, V. T. Zaspalis, C. Sattler, P. Stobbe, and A. M. Steele, Solar water splitting for hydrogen production with monolithic reactors, Solar Energy, 79 (4) (2005) 409-421.

DOI: 10.1016/j.solener.2005.02.026

Google Scholar

[244] M. Roeb, J. P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira, D. Graf, M. Ebert, W. Reinalter, M. Meyer-Grünefeldt, C. Sattler, A. Lopez, A. Vidal, A. Elsberg, P. Stobbe, D. Jones, A. Steele, S. Lorentzou, C. Pagkoura, A. Zygogianni, C. Agrafiotis, and A. G. Konstandopoulos, Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower, Solar Energy, 85 (4) (2011) 634-644.

DOI: 10.1016/j.solener.2010.04.014

Google Scholar

[245] E. Thimsen, F. L. Formal, M. Gratzel, and S. C. Warren, Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting, Nano Lett, 11 (2011) 35.

DOI: 10.1021/nl1022354

Google Scholar

[246] G. Maag, and A. Steinfeld, Design of a 10 MW particle-flow reactor for syngas production by steam-gasification of carbonaceous feedstock using concentrated solar energy, Energy Fuels, 24 (2010) 6540-6547.

DOI: 10.1021/ef100936j

Google Scholar

[247] W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile, and A. Steinfeld, High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria, Science, 330 (2010) 1797-1801.

DOI: 10.1126/science.1197834

Google Scholar

[248] G. A. Le, S. Abanades, and G. Flamant, CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions, Energy Fuels, 25 (2011) 4836-4845.

DOI: 10.1021/ef200972r

Google Scholar

[249] J. J. Spivey, E. M. Wilcox, and G. W. Roberts, Direct utilization of carbon dioxide in chemical synthesis: vinyl acetate via methane carboxylation, Catal. Commun., 9 (2008) 685-689.

DOI: 10.1016/j.catcom.2007.08.023

Google Scholar

[250] E. M. Wilcox, G. W. Roberts, and J. J. Spivey, Direct catalytic formation of acetic acid from CO2 and methane, Catal. Today, 88 (2003) 83-90.

DOI: 10.1016/j.cattod.2003.08.007

Google Scholar

[251] E. M. Wilcox, M. R. Gogate, J. J. Spivey, and G. W. Roberts, Direct synthesis of acetic acid from methane and carbon dioxide, Stud. Surf. Sci. Catal., 136 (2001) 259-264.

DOI: 10.1016/s0167-2991(01)80313-x

Google Scholar

[252] K. E. Vidalin, and D. M. Thiebaut, Methanol plant retrofit for the manufacture of acetic acid, 2004, Acetex Cyprus Limited, Cyprus, p.16 pp., Cont.-in-part of U.S. 6,232,352.

Google Scholar

[253] K. E. Vidalin, Methanol plant retrofit for acetic acid manufacture, 2001, Acetex Limited, Cyprus, p.17 pp., Cont.-in-part of U.S. Ser. No. 430,888.

Google Scholar

[254] D. M. Thiebaut, and K. E. Vidalin, Methanol plant retrofit for the manufacture of acetic acid, 2001, Acetex Cyprus Limited, Cyprus, p.44 pp.

Google Scholar

[255] N. Ikehara, K. Hara, A. Satsuma, T. Hattori, and Y. Murakami, Unique temperature dependence of acetic acid formation in CO2 hydrogenation on Ag-promoted Rh/SiO2 catalyst, Chem. Lett., (1994) 263-264.

DOI: 10.1246/cl.1994.263

Google Scholar

[256] M. M. T. Khan, S. B. Halligudi, and S. Shukla, Stoichiometric reduction of carbon dioxide to formaldehyde and formic acid by K[RuIII(EDTA-H)Cl]·2H2O, J. Mol. Catal., 53 (1989) 305-313.

DOI: 10.1016/0304-5102(89)80065-3

Google Scholar

[257] M. M. T. Khan, S. B. Halligudi, N. N. Rao, and S. Shukla, Formic acid and formaldehyde as spin off products in ruthenium-EDTA-CO complex catalyzed liquid-phase water-gas shift reaction, J. Mol. Catal., 51 (1989) 161-170.

DOI: 10.1016/0304-5102(89)80097-5

Google Scholar

[258] J. Wambach, and H. J. Freund, Carbon dioxide activation on transition metal surfaces, Spec. Publ. - R. Soc. Chem., 153 (1994) 31-43.

DOI: 10.1016/b978-1-85573-799-0.50009-1

Google Scholar

[259] K. Kudo, H. Phala, N. Sugita,, and Y. Takezaki, Synthesis of dimethyl formamide from carbon dioxide, hydrogen and dimethyl amine catalyzed by palladium(II) chloride, Chem. Lett., (1977) 1495-1496.

DOI: 10.1246/cl.1977.1495

Google Scholar

[260] I. Omae, Aspects of carbon dioxide utilization, Catalysis Today, 115 (1–4) (2006) 33-52.

DOI: 10.1016/j.cattod.2006.02.024

Google Scholar

[261] P. G. Jessop, Y. Hsiao, T. Ikariya, and R. Noyori, Catalytic production of dimethylformamide from supercritical carbon dioxide, J. Am. Chem. Soc., 116 (1994) 8851-8852.

DOI: 10.1021/ja00098a072

Google Scholar

[262] L. Schmid, M. Rohr, and A. Baiker, A mesoporous ruthenium silica hybrid aerogel with outstanding catalytic properties in the synthesis of N,N-diethylformamide from CO2, H2 and diethylamine, Chem. Commun., (1999) 2303-2304.

DOI: 10.1039/a906956i

Google Scholar

[263] O. Krocher, R. A. Koppel, and A. Baiker, Novel homogeneous and heterogeneous catalysts for the synthesis of formic acid derivatives from CO2, Chimia, 51 (1997) 48-51.

DOI: 10.1002/chin.199728233

Google Scholar

[264] Y. Kayaki, T. Suzuki, and T. Ikariya, Water-soluble trialkylphosphine-ruthenium (II) complexes as efficient catalysts for hydrogenation of supercritical carbon dioxide, Chem. Lett., (2001) 1016-1017.

DOI: 10.1246/cl.2001.1016

Google Scholar

[265] P. G. Jessop, Y. Hsiao, T. Ikariya, and R. Noyori, Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides, J. Am. Chem. Soc., 118 (1996) 344-55.

DOI: 10.1021/ja953097b

Google Scholar

[266] O. Krocher, R. A. Koppel, and A. Baiker, Sol-gel derived hybrid materials as heterogeneous catalysts for the synthesis of N,N-dimethylformamide from supercritical carbon dioxide. Chem. Commun., 13 (1996) 1497-1498.

DOI: 10.1039/cc9960001497

Google Scholar

[267] F. Liu, M. B. Abrams, R. T. Baker, and W. Tumas, Phase-separable catalysis using room temperature ionic liquids and supercritical carbon dioxide, Chem. Commun., (2001) 433-434.

DOI: 10.1039/b009701m

Google Scholar

[268] B. Jezowska-Trzebiatowska, and P. Sobota, Catalytic fixation of carbon dioxide under mild conditions in the system: Titanium tetrachloride + magnesium + molecular hydrogen in tetrahydrofuran, J. Organomet. Chem., 80 (1974) C27-C28.

DOI: 10.1002/chin.197448423

Google Scholar

[269] C. P. Lau, and Y. Z. Chen, Hydrogenation of carbon dioxide to formic acid using a 6,6'-dichloro-2,2'-bipyridine complex of ruthenmiu, cis-[Ru(6,6'-Cl2bpy)2(H2O)2](CF3SO3)2, J. Mol. Catal. A: Chem., 101 (1995) 33-36.

DOI: 10.1016/1381-1169(95)00068-2

Google Scholar

[270] W. Leitner, E. Dinjus, and F. Gassner, Activation of carbon dioxide: IV – rhodium catalyzed hydrogenation of carbon dioxide to formic acid, J. Organomet. Chem., 475 (1994) 257-266.

DOI: 10.1016/0022-328x(94)84030-x

Google Scholar

[271] R. Fornika, H. Goerls, B. Seemann, and W. Leitner, Complexes [(P2)Rh(hfacac)] (P2 = bidentate chelating phosphane, hfacac = hexafluoroacetylacetonate) as catalysts for CO2 hydrogenation: correlations between solid state structures, 103Rh NMR shifts and catalytic activities, J. Chem. Soc., Chem. Commun., (1995) 1479-1481.

DOI: 10.1039/c39950001479

Google Scholar

[272] K. Kudo, N. Sugita, and Y. Takezaki, Kinetic study on the synthesis of alkali formates from carbon dioxide and hydrogen catalyzed by palladium(II) chloride in an aqueous alkali solution, Nippon Kagaku Kaishi, (1977) 302-309.

DOI: 10.1246/nikkashi.1977.302

Google Scholar

[273] F. Gassner, and W. Leitner, Carbon dioxide activation, 3. Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalysts, J. Chem. Soc., Chem. Commun., (1993) 1465-1466.

DOI: 10.1039/c39930001465

Google Scholar

[274] P. G. Jessop, T. Ikarlya, and R. Noyori, Homogeneous catalytic hydrogenation of supercritical carbon dioxide, Nature (London), 368 (1994) 231-233.

DOI: 10.1038/368231a0

Google Scholar

[275] P. Munshi, A. D. Main, J. C. Linehan, C. -C. Tai, and P. G. Jessop, Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines, J. Am. Chem. Soc., 124 (2002) 7963-7971.

DOI: 10.1021/ja0167856

Google Scholar

[276] Z. Zhang, S. Hu, J. Song, W. Li, G. Yang, and B. Han, Hydrogenation of CO2 to formic acid promoted by a diamine functionalized ionic liquid, ChemSusChem, 2 (2009) 234-238.

DOI: 10.1002/cssc.200800252

Google Scholar

[277] N. N. Ezhova, N. V. Kolesnichenko, A. V. Bulygin, E. V. Slivinskii, and S. Han, Hydrogenation of CO2 to formic acid in the presence of the Wilkinson complex, Russ. Chem. Bull., 51 (2002) 2165-2169.

DOI: 10.1023/a:1022162713837

Google Scholar

[278] Y. Gao, J. K. Kuncheria, H. A. Jenkins, R. J. Puddephatt, and G. P. A. Yap, The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst, Dalton, (2000) 3212-3217.

DOI: 10.1039/b004234j

Google Scholar

[279] M. L. Man, Z. Zhou, S. M. Ng, and C. P. Lau, Synthesis, characterization and reactivity of heterobimetallic complexes (η5-C5R5)Ru(CO)(μ-dppm)M(CO)2(η5-C5H5) (R = H, CH3; M = Mo, W): interconversion of hydrogen/carbon dioxide and formic acid by these complexes, Dalton Trans., (2003) 3727-3735.

DOI: 10.1039/b306835h

Google Scholar

[280] C. Yin, Z. Xu, S. -Y. Yang, S. M. Ng, K. Y. Wong, Z. Lin, and C. P. Lau, Promoting effect of water in ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid, Organometallics, 20 (2001) 1216-1222.

DOI: 10.1021/om000944x

Google Scholar

[281] S. M. Ng, C. Yin, C. H. Yeung, T. C. Chan, and C. P. Lau, Ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid in alcohols, Eur. J. Inorg. Chem., (2004) 1788-1793.

DOI: 10.1002/ejic.200300847

Google Scholar

[282] T. -T. Thai, B. Therrien, and G. Suss-Fink, Arene ruthenium oxinato complexes: Synthesis, molecular structure and catalytic activity for the hydrogenation of carbon dioxide in aqueous solution, J. Organomet. Chem., 694 (2009) 3973-3981.

DOI: 10.1016/j.jorganchem.2009.09.008

Google Scholar

[283] S. Sanz, A. Azua, and E. Peris, '(η6-arene)Ru(bis-NHC)' complexes for the reduction of CO2 to formate with hydrogen and by transfer hydrogenation with iPrOH, Dalton Trans., 39 (2010) 6339-6343.

DOI: 10.1039/c003220d

Google Scholar

[284] Y. Himeda, Conversion of CO2 into formate by homogeneously catalyzed hydrogenation in water: tuning catalytic activity and water solubility through the acid-base equilibrium of the ligand, Eur. J. Inorg. Chem., (2007) 3927-3941.

DOI: 10.1002/ejic.200700494

Google Scholar

[285] R. Tanaka, M. Yamashita, and K. Nozaki, Catalytic hydrogenation of carbon dioxide using Ir(III)-Pincer complexes, J. Am. Chem. Soc., 131 (2009) 14168-14169.

DOI: 10.1021/ja903574e

Google Scholar

[286] S. Sanz, M. Benitez, and E. Peris, A new approach to the reduction of carbon dioxide: CO2 reduction to formate by transfer hydrogenation in iPrOH, Organometallics, 29 (2010) 275-277.

DOI: 10.1021/om900820x

Google Scholar

[287] T. -T. Thai, B. Therrien, and G. Suss-Fink, High-pressure combinatorial screening of homogeneous catalysts: hydrogenation of carbon dioxide, Inorg. Chem., 42 (2003) 7340-7341.

DOI: 10.1021/ic034881x

Google Scholar

[288] Y. Zhang, J. Fei, Y. Yu, and X. Zheng, Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (I): the effect of functionalizing group and additive on the catalyst performance, Catal. Commun., 5 (2004) 643-646.

DOI: 10.1016/j.catcom.2004.08.001

Google Scholar

[289] Y. Inoue, Y. Sasaki, and H. Hasimoto, Synthesis of formates from alcohols, carbon dioxide, and hydrogen catalyzed by a combination of Group VIII transition metal complexes and tertiary amines, J. Chem. Soc., Chem. Commun., (1975) 718-719.

DOI: 10.1039/c39750000718

Google Scholar

[290] G. O. Evans, and C. J. Newell, Conversion of carbon dioxide, hydrogen and alcohols into formate esters using anionic iron carbonyl hydrides, Inorg. Chim. Acta, 31 (1978) L387-L389.

DOI: 10.1016/s0020-1693(00)94933-8

Google Scholar

[291] P. G. Jessop, Y. Hsiao, T. Ikariya, and R. Noyori, Methyl formate synthesis by hydrogenation of supercritical carbon dioxide in the presence of methanol, J. Chem. Soc., Chem. Commun., (1995) 707-708.

DOI: 10.1039/c39950000707

Google Scholar

[292] Y. Himeda, Conversion of CO2 into formate by homogeneously catalyzed hydrogenation in water: tuning catalytic activity and water solubility through the acid–base equilibrium of the ligand, Eur. J. Inorganic Chem., 2007 (25) (2007) 3927-3941.

DOI: 10.1002/ejic.200700494

Google Scholar

[293] Y. Inoue, H. Izumida, Y. Sasaki, and H. Hashimoto, Catalytic fixation of carbon dioxide to formic acid by transitionmetal complexes under mild conditions, Chem. Lett., (1976) 863-864.

DOI: 10.1246/cl.1976.863

Google Scholar

[294] W. Leiner, E. Dinjus, and F. Gassner, Aqueous-phase organometallic catalysis, concepts and applications (Eds.: B. Cornils, W. A. Herrmann), Wiley-VCH, Weinheim, (1998), 486–498.

Google Scholar

[295] G. Kovacs, G. Schubert, F. Joo, and I. Papai, Theoretical investigation of catalytic HCO3- hydrogenation in aqueous solutions, Catal. Today, 115 (2006) 53-60.

DOI: 10.1016/j.cattod.2006.02.018

Google Scholar

[296] H. Horvath, G. Laurenczy, and A. Katho, Water-soluble (η6-arene)ruthenium(II)-phosphine complexes and their catalytic activity in the hydrogenation of bicarbonate in aqueous solution, J. Organomet. Chem., 689 (2004) 1036-1045.

DOI: 10.1016/j.jorganchem.2003.11.036

Google Scholar

[297] J. Elek, L. Nadasdi, G. Papp, G. Laurenczy, and F. Joo, Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes, Appl. Catal., A, 255 (2003) 59-67.

DOI: 10.1016/s0926-860x(03)00644-6

Google Scholar

[298] F. Joo, G. Laurenczy, P. Karady, J. Elek, L. Nadasdi, and R. Roulet, Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under mild conditions with water soluble rhodium(I)- and ruthenium(II)-phosphine catalysts, Appl. Organomet. Chem., 14 (2000) 857-859.

DOI: 10.1002/1099-0739(200012)14:12<857::aid-aoc86>3.0.co;2-9

Google Scholar

[299] G. Laurenczy, F. Joo, and L. Nadasdi, Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution, Inorg. Chem., 39 (2000) 5083-5088.

DOI: 10.1021/ic000200b

Google Scholar

[300] P. G. Jessop, Handbook of Homogeneous Hydrogenation (Eds.: J. G. De Vries, C. J. Elsevier), Wiley-VCH, Weinheim, 2007, 1, p.489–511.

Google Scholar

[301] W. Leitner, Carbon dioxide as a raw material: the synthesis of formic acid and its derivatives from CO2, Angew. Chem., Int. Ed. Engl., 34 (1995) 2207-2221.

DOI: 10.1002/anie.199522071

Google Scholar

[302] P. G. Jessop, T. Ikariya, and R. Noyori, Homogeneous hydrogenation of carbon dioxide, Chem. Rev., 95 (1995) 259-272.

DOI: 10.1021/cr00034a001

Google Scholar

[303] I. Joszai, and F. Joo, Hydrogenation of aqueous mixtures of calcium carbonate and carbon dioxide using a water-soluble rhodium(I)-tertiary phosphine complex catalyst, J. Mol. Catal. A: Chem., 224 (2004) 87-91.

DOI: 10.1016/j.molcata.2004.08.045

Google Scholar

[304] O. Krocher, R. A. Koppel, M. Froba, and A. Baiker, Silica hybrid gel catalysts containing Group (VIII) transition metal complexes: preparation, structural, and catalytic properties in the synthesis of N,Ndimethylformamide and methyl formate from supercritical carbon dioxide, J. Catal., 178 (1998) 284-298.

DOI: 10.1006/jcat.1998.2151

Google Scholar

[305] Y. Kayaki, Y. Shimokawatoko, and T. Ikariya, Amphiphilic resin-supported ruthenium(II) complexes as recyclable catalysts for the hydrogenation of supercritical carbon dioxide, Adv. Synth. Catal., 345 (2003) 175-179.

DOI: 10.1002/adsc.200390007

Google Scholar

[306] S. -E. Park, J. -S. Chang and K.-W. Lee, Carbon dioxide utilization for global sustainability, Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 2004, 153.

Google Scholar

[307] M. M. Bhasin, J. H. McCain, B. V. Vora, T. Imai, and P. R. Pujado, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal., A, 221 (2001) 397-419.

DOI: 10.1016/s0926-860x(01)00816-x

Google Scholar

[308] F. Cavani, and F. Trifiro, Alternative processes for the production of styrene, Appl. Catal., A, 133 (1995) 219-39.

Google Scholar

[309] G. Raju, B. M. Reddy, B. Abhishek, Y. -H. Mo, and S. -E. Park, Synthesis of C4 olefins from n-butane over a novel VOx/SnO2-ZrO2 catalyst using CO2 as soft oxidant, Appl. Catal., A, 423-424 (2012) 168-175.

DOI: 10.1016/j.apcata.2012.02.040

Google Scholar

[310] K. N. Rao, B. M. Reddy, and S. -E. Park, Novel CeO2 promoted TiO2-ZrO2 nanooxide catalysts for oxidative dehydrogenation of p-diethylbenzene utilizing CO2 as soft oxidant, Appl. Catal., B, 100 (2010) 472-480.

DOI: 10.1016/j.apcatb.2010.08.024

Google Scholar

[311] K. N. Rao, B. M. Reddy, B. Abhishek, Y. -H. Seo, N. Jiang, and S. -E. Park, Effect of ceria on the structure and catalytic activity of V2O5/TiO2-ZrO2 for oxidehydrogenation of ethylbenzene to styrene utilizing CO2 as soft oxidant, Appl. Catal., B, 91 (2009) 649-656.

DOI: 10.1016/j.apcatb.2009.07.003

Google Scholar

[312] B. M. Reddy, S. -C. Lee, D. -S. Han, and S. -E. Park, Utilization of carbon dioxide as soft oxidant for oxydehydrogenation of ethylbenzene to styrene over V2O5-CeO2/TiO2-ZrO2 catalyst, Appl. Catal., B, 87 (2009) 230-238.

DOI: 10.1016/j.apcatb.2008.08.026

Google Scholar

[313] B. M. Reddy, N. Jiang, and S. -E. Park, Oxidehydrogenation of ethylbenzene to styrene over zirconia-based catalysts with carbon dioxide as soft oxidant, Prepr. - Am. Chem. Soc., Div. Pet. Chem., 53 (2008) 30-33.

Google Scholar

[314] B. M. Reddy, N. Jiang, and S. -E. Park, Oxidehydrogenation of ethylbenzene to styrene over zirconia-based catalysts with carbon dioxide as soft oxidant, Am. Chem. Soc., Div. Petro. Chem. Preprints, 53 (2) (2008) 30 - 33.

Google Scholar

[315] B. M. Reddy, D. -S. Han, N. Jiang, and S. –E. Park, Dehydrogenation of ethylbenzene to styrene with carbon dioxide over ZrO2-based composite oxide catalysts, Catal. Surv. Asia, 12 (2008) 56-69.

DOI: 10.1007/s10563-007-9039-8

Google Scholar

[316] T. Seki, and A. Baiker, Catalytic oxidations in dense carbon dioxide, Chem. Rev., 109 (6) (2009) 2409-2454.

DOI: 10.1021/cr8004058

Google Scholar

[317] D. Abbott, Keeping the energy debate clean: how do we supply the world's energy needs? Proceedings of the IEEE, 98 (1) (2010) 42-66.

DOI: 10.1109/jproc.2009.2035162

Google Scholar

[318] R. Priddle, World Energy Outlook 2002, International Energy Agency and Energy Technology Analysis, 2002, IEA/OECD, Second Edition(Paris, France): p. http://www.iea.org/textbase/nppdf/free/2000/weo2002.pdf.

Google Scholar

[319] World electric power-plants database. Utility Data Institute, 2003. McGraw-Hill, Washington DC.

Google Scholar

[320] World oil and gas review 2004. ENI, 2004. Rome, Italy(http://www.agip.it/).

Google Scholar

[321] WEC, W.E.C., 19th survey of world energy resources. World Energy Council, 2001, London, (hUtKtp://www.worldenergy.org/wecgeis/publications/default/launches/ser/ser.asp).

Google Scholar

[322] G. Moritis, EOR continues to unlock oil resources. Oil & Gas Journal, 12 (April) (2004) 53.

Google Scholar

[323] I. E. Agency, Key World Energy Statistics, 2009, IEA, 2009. Paris (France) (2010).

Google Scholar

[324] M. Pehnt, Fuel cells in the power market: separating the hope from the hype, presented at CAN Europe meeting, 27 May, Brussels, Belgium, 2004, http://www.climnet.org/CTAP/workshop2004/PresentationsWS2.htm/.

Google Scholar

[325] N. S. Lewis, G. Crabtree, A. Nozik, M. Wasielewski, and P. Alivisatos, Basic research needs for solar energy utilization, US Department of Energy, 2005, Washington DC.

Google Scholar

[326] J. Garcia-Martinez, Nanotechnology for the Energy Challenge. Wiley-VCH, 2010, Weinheim, Germany.

Google Scholar

[327] T.B.C. Group, Batteries for Electric Cars: Challenges, Opportunities, and the Outlook to 2020. BCG, 2010. Boston, MA, USA(September): p. http://www.bcg.com/documents/file36615.pdf.

Google Scholar

[328] E. Mobil, Exxon Mobil Algae Biofuels Research and Development Program, http://www.exxonmobil.com/corporate/files/news_pub_algae_factsheet.pdf/, 2012. 1(1).

Google Scholar

[329] M. Khoshtinat, N. A. S. Amin, and I. Noshadi, A review of methanol production from methane oxidation via non-thermal plasma reactor, World Academy of Science, Engineering and Technology, 2010, 62: p.354.

Google Scholar

[330] A. Aruchamy, G. Aravamudan, and G.V.S. Rao, Semiconductor based photoelectrochemical cells for solar energy conversion – an overview. Bull. Mater. Sci., 4 (5) (1982) 483.

DOI: 10.1007/bf02824960

Google Scholar

[331] L. R. Sheppard, and J. Nowotny, Materials for photoelectrochemical energy conversion, Adv. Appl. Ceram., 106 (1-2) (2007) 9.

Google Scholar

[332] N. S. Lewis, and D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 103 (2006) 15729.

DOI: 10.1073/pnas.0603395103

Google Scholar

[333] J. J. Conti, L. E. Doman, K. A. Smith, L. D. Mayne, E. M. Yucel, J. L. Barden, A. M. Fawzi, P. D. Martin, V. V. Zaretskaya, M. L. Mellish, D. R. Kearney, B. T. Murphy, K. R. Vincent, P. M. Lindstrom, M. T. Leff, A. Geagla, J. Holte, B. Kapilow-Cohen, M. LaRiviere, C. L. Smith, J. Staub, G. Sweetnam, and P. Wells, International Energy Outlook 2010, The U.S. Energy Information Administration (EIA), U.S. Department of Energy, 2010, DOE/EIA-0484 (2010), Washington, DC(1): p.338.

DOI: 10.2172/653982

Google Scholar

[334] M. Stocker, Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials, Angew. Chem., Int. Ed., 47 (2008) 9200-9211.

DOI: 10.1002/anie.200801476

Google Scholar

[335] P. Gallezot, Catalytic conversion of biomass: challenges and issues, ChemSusChem, 1 (2008) 734-737.

DOI: 10.1002/cssc.200800091

Google Scholar

[336] G. W. Huber, S. Iborra, and A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev., 106 (2006) 4044-4098.

DOI: 10.1021/cr068360d

Google Scholar

[337] G. Centi, and S. Perathoner, Towards solar fuels from water and CO2, ChemSusChem, 3 (2010) 195-208.

DOI: 10.1002/cssc.200900289

Google Scholar

[338] A. J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels, Nano Lett., 10 (2010) 2735-2741.

DOI: 10.1021/nl102122x

Google Scholar

[339] S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano, 4 (2010) 1259-1278.

DOI: 10.1021/nn9015423

Google Scholar

[340] H. Tributsch, Photovoltaic hydrogen generation, Int. J. Hydrogen Energy, 33 (2008) 5911-5930.

DOI: 10.1016/j.ijhydene.2008.08.017

Google Scholar

[341] T. L. Gibson, and N. A. Kelly, Optimization of solar powered hydrogen production using photovoltaic electrolysis devices, Int. J. Hydrogen Energy, 33 (2008) 5931-5940.

DOI: 10.1016/j.ijhydene.2008.05.106

Google Scholar

[342] S. Manisha, and R. Banerjee, Comparison of biohydrogen production processes, Int. J. Hydrogen Energy, 33 (1) (2008) 279–286.

Google Scholar

[343] S. M. Kotaya, and D. Das, Biohydrogen as a renewable energy resource – Prospects and potentials, Int. J. Hydrogen Energy, 33 (1) (2008) 258–263.

DOI: 10.1016/j.ijhydene.2007.07.031

Google Scholar

[344] T. Kodama, and N. Gokon, Thermochemical cycles for high-temperature solar hydrogen production, Chem. Rev., 107 (2007) 4048-4077.

DOI: 10.1021/cr050188a

Google Scholar

[345] A. Kudo, and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253-278.

DOI: 10.1039/b800489g

Google Scholar

[346] Y. R. M. Navarro, G. M. C. Alvarez, V. F. del, d. l. M. J. A. Villoria, and J. L. G. Fierro, Water splitting on semiconductor catalysts under visible-light irradiation, ChemSusChem, 2 (2009) 471-485.

DOI: 10.1002/cssc.200900018

Google Scholar

[347] A. Currao, Photoelectrochemical water splitting, Chimia, 61 (2007) 815-819.

DOI: 10.2533/chimia.2007.815

Google Scholar

[348] N. A. Kelly, and T. L. Gibson, Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int. J. Hydrogen Energy, 31 (2006) 1658-1673.

DOI: 10.1016/j.ijhydene.2005.12.014

Google Scholar

[349] A. J. Morris, G.J. Meyer, and E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res., 42 (2009) 1983-1994.

DOI: 10.1021/ar9001679

Google Scholar

[350] G. Krajacic, R. Martins, A. Busuttil, N. Duic, and G. C. M. da, Hydrogen as an energy vector in the islands' energy supply, Int. J. Hydrogen Energy, 33 (2008) 1091-1103.

DOI: 10.1016/j.ijhydene.2007.12.025

Google Scholar

[351] P. P. Edwards, V. L. Kuznetsov, and W. I. F. David, Hydrogen energy, Philos. Trans. R. Soc., A, 365 (2007) 1043-1056.

Google Scholar

[352] A. Sartbaeva, V. L. Kuznetsov, S. A. Wells, and P. P. Edwards, Hydrogen nexus in a sustainable energy future, Energy Environ. Sci., 1 (2008) 79-85.

DOI: 10.1039/b810104n

Google Scholar

[353] D. G. Vlachos, and S. Caratzoulas, The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis, Chem. Eng. Sci., 65 (2009) 18-29.

DOI: 10.1016/j.ces.2009.09.019

Google Scholar

[354] R. J. Farrauto, Building the hydrogen economy, Hydrocarbon Eng., 14 (2009) 25-26.

Google Scholar

[355] N. Z. Muradov, and T. N. Veziroglu, "Green" path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies, Int. J. Hydrogen Energy, 33 (2008) 6804-6839.

DOI: 10.1016/j.ijhydene.2008.08.054

Google Scholar

[356] H. W. Cooper, Fuel cells, the hydrogen economy and you, Chem. Eng. Prog., 103 (2007) 34-43.

Google Scholar

[357] F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, and S. Peteves, Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term, Int. J. Hydrogen Energy, 32 (2007) 3797-3810.

DOI: 10.1016/j.ijhydene.2007.05.027

Google Scholar

[358] D. Strahan, Hydrogen's long road to nowhere, New Sci., 200 (2008) 40-43.

Google Scholar

[359] J. O. M. Bockris, Hydrogen no longer a high cost solution to global warming: new ideas, Int. J. Hydrogen Energy, 33 (2008) 2129-2131.

DOI: 10.1016/j.ijhydene.2008.02.030

Google Scholar

[360] J. Nowotny, and L. R. Sheppard, Solar-hydrogen, Int. J. Hydrogen Energy, 32 (2007) 2607-2608.

DOI: 10.1016/j.ijhydene.2006.09.003

Google Scholar