Photocatalysis by Nanoparticles of Titanium Dioxide for Drinking Water Purification: A Conceptual and State-of-Art Review

Article Preview

Abstract:

To overcome the water pollution problems, and to meet stringent environmental regulations, scientist and researchers have been focusing on the development of new water purification processes. One such group of new technologies is advanced oxidation processes (AOPs). Among the AOPs, titanium dioxide photocatalysis has been widely studied on lab scale by the researchers for decontamination of drinking water. In the present chapter, a conceptual as well as state-of-art review of titanium dioxide photocatalysis for water purification has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-150

Citation:

Online since:

July 2013

Export:

Price:

[1] Ternes, T., 1998. Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32, 3245–3260.

DOI: 10.1016/s0043-1354(98)00099-2

Google Scholar

[2] Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E., Zaugg, S. D., Buxton, L. B., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environmental Science and Technology, 36, 1202–1211.

DOI: 10.1021/es011055j

Google Scholar

[3] Boyd, G. R., Reemtsma, H., Grimm, D. A., Mitra, S., 2003. Pharmaceuticals and personalcare products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of the Total Environment, 311, 135–149.

DOI: 10.1016/s0048-9697(03)00138-4

Google Scholar

[4] Jasim, S. Y., Irabell, A., Yang, P., Ahmed, S., Schweitzer, L. 2006. Presence of pharmaceuticals and pesticides in Detroit river water and the effect of Ozone on removal. Ozone: Science & Engineering, 28, 415–423.

DOI: 10.1080/01919510600985945

Google Scholar

[5] Na, T., Fang, Z., Zhanqi, G., Cheng, Z., Ming, S., 2006. The status of pesticide residues in the drinking water sources in Meiliangwan bay, Taihu lake of China. Environmental Monitoring and Assessment, 123, 351–370.

DOI: 10.1007/s10661-006-9202-0

Google Scholar

[6] Pasternak, J., 2006. Agricultural pesticide residues in farm ditches of the lower Fraser Valley, British Columbia, Canada. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41, 647–669.

DOI: 10.1080/03601230600701817

Google Scholar

[7] Oppenlander, T., 2004. Photochemical purification of water and air. Weinheim, Wiley–VCH.

Google Scholar

[8] Poyatos, J., Munio, M., Almecija, M., Torres, J., Hontoria, E., Osorio, F., 2009. Advanced oxidation processes for wastewater treatment: state of the art. Water, Air and Soil Pollution , 205, 187–204.

DOI: 10.1007/s11270-009-0065-1

Google Scholar

[9] Legrini, O., Oliveros, E., Braun, M., 1993. Photochemical processes for water treatment. Chemical Reviews, 93, 671-698.

DOI: 10.1021/cr00018a003

Google Scholar

[10] Oppenlander T. 2003. Photochemical purification of water and air. Advanced oxidation processes (AOPs): principles, reaction mechanisms, reactor concepts. Weinheim, Wiley-VCH.

DOI: 10.1002/9783527610884.ch1

Google Scholar

[11] Kisch, H., 1989. What is Photocatalysis, in photocatalysis: Fundamentals and applications, ed by N. Serpone and E. Pelizzetti, 1-7. New York, Wiley.

Google Scholar

[12] Fenton H. J. J., 1894. Oxidation of tartaric acid in the presence of iron. Journal of Chemical Society, 65, 899-901.

Google Scholar

[13] Litter, M. I., 1999. Heterogeneous photocatalysis: Transitiion metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 23, 89-114.

DOI: 10.1016/s0926-3373(99)00069-7

Google Scholar

[14] Mills, A., Davies, R. H., Worsley, D. 1993. Water purification by semiconductor photocatalysis. Chemical Society Reviews, 22, 417–425.

DOI: 10.1039/cs9932200417

Google Scholar

[15] Matthews, R. W., 1988. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. Journal of Catalysis, 111, 264–272.

DOI: 10.1016/0021-9517(88)90085-1

Google Scholar

[16] Linsebigler, A. L., Lu, G., Yates, J. T., 1995. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95, 735–758.

DOI: 10.1021/cr00035a013

Google Scholar

[17] Minero, C., Pelizzetti, E., Malato, S., Blanco, J., 1996. Large solar plant photocatalytic water decontamination: Degradation of atrazine. Solar Energy, 56, 411-419.

DOI: 10.1016/0038-092x(96)00028-x

Google Scholar

[18] Ollis, D. F., Pelizzetti, E., Serpone, N., 1989. Heterogeneous photocatalysis in environment: Application to water purification. In photocatalysis: Fundamentals and applications, ed by N. Serpone and E. Pelizzetti, Willey Interscience, New York, 603-637.

DOI: 10.1007/978-94-009-4642-2

Google Scholar

[19] Mills, A., Hunte, S. L., 1997. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35.

DOI: 10.1016/s1010-6030(97)00118-4

Google Scholar

[20] Carraway, E. R., Hoffmann, A. J., Hoffmann, M. R., 1994. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environmental Science and Technology, 28, 786-793.

DOI: 10.1021/es00054a007

Google Scholar

[21] Hoffmann, M. R., Martin, S. T., Choi W., Bahnemannt, D. W., 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

Google Scholar

[22] Khalil, L. B., Mourad, W. E., Rophael, M. W., 1998. Photocatalytic reduction of environmental pollutant Cr (VI) over some semiconductors under UV/visible light illumination. Applied Catalysis B: Environmental, 17, 267-273.

DOI: 10.1016/s0926-3373(98)00020-4

Google Scholar

[23] Ohno, T., Tsubota, T., Toyofuku, M., Inaba, R., 2004. Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions have a rutile phase under visible light. Catalysis Letters, 98, 255-258.

DOI: 10.1007/s10562-004-8689-7

Google Scholar

[24] Fox, M. A., Dulay, M. T., 1993. Heterogeneous Photocatalysis. Chemical Reviews, 93, 341–357.

Google Scholar

[25] Davis, A. P., Huang, C, P., 1991. The photocatalytic oxidation of sulfur-containing organic compounds using cadmium sulfide and the effect on CdS photocorrosion. Water Research, 25, 1273-1278.

DOI: 10.1016/0043-1354(91)90067-z

Google Scholar

[26] Reutergardh, L. B., Iangphasuk, M., 1997. Photocatalytic decolorization of reactive Azo dye: A comparison between TiO2 and CdS Photocatalysis. Chemosphere, 35, 585- 596.

DOI: 10.1016/s0045-6535(97)00122-7

Google Scholar

[27] Deng, N. S., Wu, F., Luo, F., Xiao, M., 1998. Ferric citrate-induced photodegradation of dyes in aqueous solution. Chemosphere, 36, 3101-3112.

DOI: 10.1016/s0045-6535(98)00014-9

Google Scholar

[28] Bahnemann, D. W., Kholuiskaya, S. N., Dillert, R., Kulak A. I., Kokorin, A. I., 2002. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Applied Catalysis B: Environmental, 36, 161-169.

DOI: 10.1016/s0926-3373(01)00301-0

Google Scholar

[29] Arabatzis, I. M., Antonaraki, S., Stergiopoulos, T., Hiskia, A., Papaconstantinou, E., Bernard, M. C., Falaras, P., 2002. Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 149, 237-245.

DOI: 10.1016/s1010-6030(01)00645-1

Google Scholar

[30] Turchi, C. S., Ollis, D. F., 1989. Mixed reactant photocatalysis : Intermediates and mutual rate inhibition. Journal of Catalysis, 119, 483- 496.

DOI: 10.1016/0021-9517(89)90176-0

Google Scholar

[31] Pelizzetti, E., Minero, C., Maurino, V., Sclafani, A., Hidaka, H., Serpone, N., 1993. Photocatalytic degradation of nonylphenol ethoxylated surfactants. Environmental Science and Technology, 23, 1380-1385.

DOI: 10.1021/es00069a008

Google Scholar

[32] Matthews, R. W., 1984. Hydroxylation reactions induced by near-ultraviolet photocatalysis of aqueous titanium dioxide suspensions. Journal of the Chemical Society, Faraday Transactions, 80, 457-471.

DOI: 10.1039/f19848000457

Google Scholar

[33] Turchi, C. S., Ollis, D, F., 1990. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. Journal of Catalysis, 122, 178-192.

DOI: 10.1016/0021-9517(90)90269-p

Google Scholar

[34] Serpone, N., Sauve, G., Koch, R., Tahiri, H., Pichat, P., Piccinini, P., Pelizzetti, E., Hidaka, H., 1996. Standadization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies. Journal of Photochemistry and Photobiology A: Chemistry, 106, 191-203.

DOI: 10.1016/1010-6030(95)04223-7

Google Scholar

[35] Augugliaro, V., Davi, E., Palmisano, L., Schiavello, M., Sclafani, A., 1990. Influence of hydrogen peroxide on the kinetics of phenol photodegradation in aqueous titanium dioxide dispersion. Applied Catalysis, 65, 101-116.

DOI: 10.1016/s0166-9834(00)81591-2

Google Scholar

[36] Sclafani, A., Herrmann, J, M., 1996. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solution. Journal of Physical Chemistry, 100, 13655-13661.

DOI: 10.1021/jp9533584

Google Scholar

[37] Carp, O., Huisman, C. L., Reller, A., 2004. Induced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33-177.

DOI: 10.1016/j.progsolidstchem.2004.08.001

Google Scholar

[38] Fujishima, A., Rao, T. N., Tryk, D. A., 2000. Titanium dioxide photocatalysis. Journal of. Photochemistry and Photobiology C: Photochemistry Reviews. 1, 1-21.

DOI: 10.1016/s1389-5567(00)00002-2

Google Scholar

[39] Cheng, H., Ma, J., Zhao, Z., Qi, L., 1995. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chemistry of Materials, 7, 663-671.

DOI: 10.1021/cm00052a010

Google Scholar

[40] So, W. W., Park, S. B., Kim, K. J., Shin, C. H., Moon, S. J., 2001. The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. Journal of Materials Science, 36, 4299-4305.

Google Scholar

[41] Xu, T., Song, C., Liu, Y., Han, G., 2006. Band structures of TiO2 doped with N, C and B. Journal of Zhejiang University Science B, 7, 299–303.

Google Scholar

[42] Corma, A., 1997. From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical Reviews, 97, 2373-2419.

DOI: 10.1021/cr960406n

Google Scholar

[43] Yin, H., Wada, Y., Kitamura, T., Kambe, S., Murasawa, S., Mori, H., Sakata, T., Yanagida, S., 2001. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2, Journal of Materials Chemistry, 11, 1694-1703.

DOI: 10.1039/b008974p

Google Scholar

[44] Zhang, Z. B., Wang, C. C., Zakaria, R., Ying, J. Y., 1998. Role of particle size in nanocrystalline TiO2 based photocatalysts. Journal of Physical Chemistry B, 102, 10871-10878.

DOI: 10.1021/jp982948+

Google Scholar

[45] Xu, Z., Shang, J., Liu, C., Kang, C., Guo, H., Du, Y., 1999. The preparation and characterization of TiO2 ultrafine particles. Material Science and Engineering: B, 56, 211-216.

DOI: 10.1016/s0921-5107(99)00084-7

Google Scholar

[46] Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., Chan, C. K., 2000. Size effect in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. Journal of Catalysis, 192, 185-196.

DOI: 10.1006/jcat.2000.2838

Google Scholar

[47] Almquist, C. B., Biswas, P., 2002. Role of synthesis method and particle size of nanostructures TiO2 on its photoactivity. Journal of Catalysis, 212, 145-156.

DOI: 10.1006/jcat.2002.3783

Google Scholar

[48] Hoffman, A. J., Yee, H., Mills, G., Hoffmann, M. R., 1992. Photoinitiated polymerization of methyl methacrylate using Q-sized zinc oxide colloids. Journal of Physical Chemistry, 96, 5540-5546.

DOI: 10.1021/j100192a066

Google Scholar

[49] Giuseppe, P. L., Langford, C. H., Vichova, J., Vleck, A., 1993. Photochemistry and picosecond absorption spectra of aqueous suspensions of a polycrystalline titaniumdioxide optically transparent in the visible spectrum. Journal of Photochemistry and Photobiology A: Chemistry, 75, 67-75.

DOI: 10.1016/1010-6030(93)80161-2

Google Scholar

[50] Wang, C. C., Zhang, Z., Ying, J. Y., 1997. Photocatalytic decomposition of alogenated organics over nanocrystalline titania. Nanostructured Materials, 90, 583-586.

DOI: 10.1016/s0965-9773(97)00130-x

Google Scholar

[51] Dijkstra, M. F., Panneman, H. J., Winkelman, J. G., Kelly, J. J., Beenackers, A. A., 2002. Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst. Chemical Engineering Science, 57, 4895–4907.

DOI: 10.1016/s0009-2509(02)00290-7

Google Scholar

[52] Al-Ekabi, H., De Mayo, P., 1986. Surface Photochemistry: On the Mechanism of the Semiconductor Photoinduced Valence Isomerization of Hexamethyl-Dewar Benzene to Hexamethylbenzene. Journal of Physical Chemistry, 90, 4075-4080.

DOI: 10.1021/j100408a048

Google Scholar

[53] Cunningham, J., Srijaranci, S. J., 1991. Sensitized photo-oxidations of dissolved alcohols in homogenous and heterogeneous systems Part 2. TiO2-sensitized hotodehydrogenations of benzyl alcohol. Journal of Photochemistry and Photobiology A: Chemistry, 58, 361-371.

DOI: 10.1016/1010-6030(91)87055-z

Google Scholar

[54] Martin, S. T., Herrmann, H., Choi, W., Hoffmann, M. R., 1994. Time-resolved microwave conductivity. Part1-TiO2 photoreactivity and size quantization. Journal of the Chemical Society, Faraday Transactions, 90, 3315-3323.

DOI: 10.1039/ft9949003315

Google Scholar

[55] Peill, N. J., Hoffmann, M. R., 1998. Mathematical model of photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis. Environmental Science and Technology, 32, 398-404.

DOI: 10.1021/es960874e

Google Scholar

[56] Haque, M. M., Muneer, M., Bahnemann, D. W., 2006. Semiconductor-mediated photocatalyzed degradation of a herbicide derivative, chlorotoluron, in aqueous suspensions. Environmental Science and Technology, 40, 4765-4770.

DOI: 10.1021/es060051h

Google Scholar

[57] Saaduon, L., Ayllon, J. A., Jimenez. Becerril, J., Peral, J., Domenech, X., Rodriguez., Clemente, R., 1999. 1, 2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania. Applied Catalysis B: Environmental, 21, 269-277.

DOI: 10.1016/s0926-3373(99)00031-4

Google Scholar

[58] Chen, D., Ray, A. K., 1999. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. Applied Catalysis B: Environmental, 23, 143-147.

DOI: 10.1016/s0926-3373(99)00068-5

Google Scholar

[59] Sriprang, N., Kaewchinda, D., Kennedy1, J. D., Milne, S. J., 2000. Processing and sol chemistry of a triol-based sol–gel route for preparing lead zirconate titanate thin films. Journal of American Ceramic Society, 83, 1914-1920.

DOI: 10.1111/j.1151-2916.2000.tb01490.x

Google Scholar

[60] Yoshiya, K., Shin-ya, M., Hiroshi, K., Bunsho, O., 2002. Design, preparation and characterization of highly active metal oxide photocatalysts. In: Photocatalysis: science and technology. Kaneko, M., Okura, I., (eds.). Berlin Heidelberg New York, Springer-Verlag: 29-49.

Google Scholar

[61] Hu, C., Tang, Y., Jiang, Z., Hao, Z., Tang, H., Wong, P. K., 2003. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Applied Catalysis A: General, 253, 389-369.

DOI: 10.1016/s0926-860x(03)00545-3

Google Scholar

[62] Alfano, O. M., Bahnemann, D., Cassano, A. E., Dillert, R., Goslich, R., 2000. Photocatalysis in water environments using artificial and solar light. Catalysis Today, 58, 199-230.

DOI: 10.1016/s0920-5861(00)00252-2

Google Scholar

[63] Pruden, A. L., Ollis, D. F., 1983. Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of TiO2. Environmental Science and Technology, 17, 628-631.

DOI: 10.1021/es00116a013

Google Scholar

[64] Robertson, K. J., Bahnemann, D. W., Robertson, J. M. C., Wood F., 2005. Photocatalytic detoxification of water and air. In: Environmental photochemistry. Part II. Boule, P., Bahnemann, D. W., Robertson P. (eds.). Berlin Heidelberg, Springer-Verlag, 367-423.

DOI: 10.1007/b138189

Google Scholar

[65] Wiszniowski, J., Robert, D., Surmacz., Gorska, J., Miksch, K., Malato, S., Weber, J. V., 2004. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts. Applied Catalysis B: Environmental, 33, 127-137.

DOI: 10.1016/j.apcatb.2004.04.017

Google Scholar

[66] Lawton, L. A., Robertson, P. K. J., Cornish, B. J. P. A., Jaspars, M., 1999. Detoxification of microcystins (cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation. Environmental Science and Technology, 33, 771-775.

DOI: 10.1021/es9806682

Google Scholar

[67] Sichel C., Blanco J., Malato S. Fernández-Ibáñez P., 2007. Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. Journal of Photochemistry and Photobiology A: Chemistry, 189, 239-246.

DOI: 10.1016/j.jphotochem.2007.02.004

Google Scholar

[68] Maness P.-C., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A. 1999. Bactericidal activity of photocatalytic TiO reaction: toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 265, 4094-4098.

DOI: 10.1128/aem.65.9.4094-4098.1999

Google Scholar

[69] Ollis, D. F., Turchi, C., 1990. Heterogeneous photocatalysis for water purification: contaminant mineralization kinetics and elementary reactor analysis. Environmental Progress, 9, 229–234.

DOI: 10.1002/ep.670090417

Google Scholar

[70] Herrmann, J., 2005. Heterogeneous photocatalysis: State of the art and present applications. Topics in Catalysis, 34, 49–65.

Google Scholar

[71] Fujishima, A., Zhang, X., 2006. Titanium dioxide photocatalysis: Present situation and future approaches. Comptes Rendus Chimie , 9, 750–760.

DOI: 10.1016/j.crci.2005.02.055

Google Scholar

[72] Natarajan T. S., Thomas M., Natarajan, K., Bajaj, H. C., Tayade, R. J., 2011. Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal, 169,126–134.

DOI: 10.1016/j.cej.2011.02.066

Google Scholar

[73] Natarajan, T. S., Natarajan, K., Bajaj, H. C., Tayade, R. J., 2011. Energy Efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application. Industrial & Engineering Chemistry Research, 50, 7753-7762.

DOI: 10.1021/ie200493k

Google Scholar