In Situ Structural Evolution of Steel-Based MMC by High Energy X-Ray Diffraction and Comparison with Micromechanical Approach

Article Preview

Abstract:

In situ high energy X-ray diffraction synchrotron was used to provide direct analysis of the transformation sequences in steel-based matrix composite (MMC) reinforced with TiC particles. Evolution of the phase fractions of the matrix and TiC particles as well as the mean cell parameters of each phase were determined by Rietveld refinement from high energy X-ray diffraction (ID15B, ESRF, Grenoble, France). In addition, some peaks were further analysed in order to obtain the X-ray strain during the cooling step. Non-linear strain evolutions of each phase are evidenced, which are either associated with differences in the coefficient of thermal expansion (CTE) between matrix and TiC particle or to the occurrence of phase transformation. Micromechanical calculations were performed through the finite element method to estimate the stress state in each phase and outline the effects of differences in CTE and of volume change associated with the matrix phase transformation. The calculated results led to a final compressive hydrostatic stress in the TiC reinforcement and tensile hydrostatic stress in the matrix area around the TiC particles. Besides, the tendencies measured from in situ synchrotron diffraction (mean cell parameters) matched with the numerical estimates.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

313-320

Citation:

Online since:

September 2013

Export:

Price:

[1] F. Akhtar, Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites, Journal of Alloys and Compound 459 (2008) 491-497.

DOI: 10.1016/j.jallcom.2007.05.018

Google Scholar

[2] E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites, Materials Science and Engineering A 246 (1998) 221-234.

DOI: 10.1016/s0921-5093(97)00710-7

Google Scholar

[3] E. Pagounis, E. Haimi, J. Pietikäinen, M. Talvitie, S. Vahvaselkä, V.K. Lindroos, Effect of thermal expansion coefficients on the martensitic transformation in a steel matrix composite, Scripta Materialia 34 (1996) 407-413.

DOI: 10.1016/s0956-716x(95)00529-5

Google Scholar

[4] G. Geandier, A. Hazotte, S. Denis, A. Mocellin, E. Maire, Microstructural analysis of alumina chromium composite by X-ray tomography and 3-D finite element simulation of thermal stresses, Scripta Materialia 48 (2003) 1219-1224.

DOI: 10.1016/s1359-6462(02)00531-6

Google Scholar

[5] M. Mourot, A. Courleux, M. Dehmas, E. Gautier, G. Geandier, O. Dezellus, J.C. Viala, O. Martin, N. Karnatak, F. Danoix, Transformation Kinetics and Resulting Microstructure in MMC Reinforced with TiC Particles, Solid State Phenomena 172-174 (2011).

DOI: 10.4028/www.scientific.net/ssp.172-174.747

Google Scholar

[6] R. Lee, G. Chen, B. Hang, Thermal and grinding induced residual stresses in a silicon carbide particle-reinforced aluminium metal matrix composites, Composites 26 (1995) 425-429.

DOI: 10.1016/0010-4361(95)90915-m

Google Scholar

[7] M. Meixner, M. Fitzpatrick, W. Reimers, Measurement of the evolution of internal strain and load partitioning in magnesium hybrid composites under compression load using in-situ synchrotron X-ray diffraction analysis, Composites Science and Technology 71 (2011).

DOI: 10.1016/j.compscitech.2010.11.003

Google Scholar

[8] S. Denis, P. Archambault, E. Gautier, A. Simon, G. Beck, Prediction of residual stresses and distortion of ferrous and non-ferrous metals: current status and future developments, Journal of Materials Engineering and Performance 11(1) (2002).

DOI: 10.1007/s11665-002-0014-2

Google Scholar

[9] Y. Zheng, L. Cui, D. Zhu, D. Yang, The constrained phase transformation of prestrained TiNi fibers embedded in metal matrix smart composite, Materials Letters 43 (2000) 91-96.

DOI: 10.1016/s0167-577x(99)00237-2

Google Scholar

[10] P. Zwigl, D.C. Dunand, Transformation Superplasticity of Iron and Fe/TiC Metal Matrix Composites, Metallurgical and Materials Transactions A 29A (1998) 565-575.

DOI: 10.1007/s11661-998-0138-6

Google Scholar

[11] A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Häusermann, Two-dimensional detector software: From real detector to idealised image or two-theta scan, High Pressure Research 14 (1996) 235-248.

DOI: 10.1080/08957959608201408

Google Scholar

[12] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, Journal of Applied Crystallography 2 (1969) 65-71.

Google Scholar

[13] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction , Physica B: Condensed Matter 192 (1993) 55-69.

DOI: 10.1016/0921-4526(93)90108-i

Google Scholar

[14] R.A. Young, D.I. Wiles, Profile Shape Functions in Rietveld Refinements, Journal of Applied Crystallography 15 (1982) 430-438.

DOI: 10.1107/s002188988201231x

Google Scholar

[15] http: /www. mat. ensmp. fr/Accueil/Telechargements/Zebulon.

Google Scholar

[16] S. Denis, P. Archambault, E. Gautier, Models for stress-phase transformation couplings in metallic alloys, Academic Press, pp.896-904 (2001).

DOI: 10.1016/b978-012443341-0/50091-0

Google Scholar

[17] J.F. Ganghoffer, S. Denis, E. Gautier, A. Simon, S. Sjöström, Finite element calculation of the micromechanics of a diffusional transformation, European Journal of Mechanics A/Solids 12 (1993) 21-32.

DOI: 10.1016/b978-0-08-037890-9.50034-x

Google Scholar

[18] E. Gautier, S. Denis, Ch. Liebaut, S. Sjöström, A. Simon, Mechanical behaviour of Fe-C alloys during phase transformations, Journal de Physique IV, Colloque C3 4 (1994) 279-284.

DOI: 10.1051/jp4:1994338

Google Scholar

[19] J. Wall, H. Choo, T.N. Tiegs, P.K. Liaw, Thermal residual stress evolution in a TiC–50 vol. % Ni3Al cermet, Materials Science and Engineering A 421 (2006) 40-45.

DOI: 10.1016/j.msea.2005.10.002

Google Scholar