Dye Sensitized Solar Cell Using Natural Dyes as Chromophores - Review

Article Preview

Abstract:

The molecular dye is an essential component of the Dye sensitized solar cell (DSSC), and improvements in efficiency over the last 15 years have been achieved by tailoring the optoelectronic properties of the dye. The most successful dyes are based on ruthenium bipyridyl compounds, which are characterized by a large absorption coefficient in the visible part of the solar spectrum, good adsorption properties, excellent stability, and efficient electron injection. However, ruthenium-based compounds are relatively expensive, and organic dyes with similar characteristics and even higher absorption coefficients have recently been reported; solar cells with efficiencies of up to 9% have been reported. Organic dyes with a higher absorption coefficient could translate into thinner nanostructured metal oxide films, which would be advantageous for charge transport both in the metal oxide and in the permeating phase, allowing for the use of higher viscosity materials such as ionic liquids, solid electrolytes or hole conductors. Organic dyes used in the DSSC often bear a resemblance to dyes found in plants, fruits, and other natural products, and several dye-sensitized solar cells with natural dyes have been reported. This paper gives an over-view of the recent works in DSSC using the natural dyes as chromophores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-51

Citation:

Online since:

October 2013

Export:

Price:

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.

DOI: 10.1038/353737a0

Google Scholar

[2] Y Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L.Y. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys. 45 (2006) 638–640.

DOI: 10.1143/jjap.45.l638

Google Scholar

[3] R. Buscaino, C. Baiocchi, C. Barolo, C. Medana, M. Grätzel, Md.K. Nazeeruddin, G. Viscardi, A mass spectrometric analysis of sensitizer solution used for dyesensitized solar cell, Inorg. Chim. Acta 361 (2008) 798–805.

DOI: 10.1016/j.ica.2007.07.016

Google Scholar

[4] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary conjugated spacer, Chem. Commun. (2009) 2198–2200.

DOI: 10.1039/b822325d

Google Scholar

[5] P.M. Sirimanne, M.K.I. Senevirathna, E.V.A. Premalal, P.K.D.D.P. Pitigala, V.Sivakumar, K. Tennakone, Utilization of natural pigment extracted from pomegranate fruits as sensitizer in solid-state solar cells, J. Photochem. Photobiol. A 177 (2006) 324–327.

DOI: 10.1016/j.jphotochem.2005.07.003

Google Scholar

[6] S. Hao, J.Wu,Y. Huang, J. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell, Sol. Energy 80 (2006) 209–214.

DOI: 10.1016/j.solener.2005.05.009

Google Scholar

[7] A.S. Polo, N.Y. Murakami Iha, Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba, Sol. Energy Mater. Sol. Cells, 90 (2006) 1936–1944.

DOI: 10.1016/j.solmat.2006.02.006

Google Scholar

[8] K. Wongcharee, V. Meeyoo, S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers, Sol. Energy Mater. Sol. Cells, 91 (2007) 566–571.

DOI: 10.1016/j.solmat.2006.11.005

Google Scholar

[9] K. Tennakone, A.R. Kumarasinghe, G.R.R.A. Kumara, K.G.U. Wijayantha, P.M. Sirimanne, Nanoporous TiO2 photoanode sensitized with the flower pigment cyaniding, J. Photochem. Photobiol. A 108 (1997) 193–195.

DOI: 10.1016/s1010-6030(97)00090-7

Google Scholar

[10] D. Zhang, S.M. Lanier, J.A. Downing, J.L. Avent, J. Lumc, J.L. McHale, Betalain pigments for dye-sensitized solar cells, J. Photochem. Photobiol. A 195 (2008) 72–80.

DOI: 10.1016/j.jphotochem.2007.07.038

Google Scholar

[11] M.S. Roy, P. Balraju, M. Kumar, G.D. Sharma, Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2, Sol. Energy Mater. Sol. Cells, 92 (2008) 909–913.

DOI: 10.1016/j.solmat.2008.02.022

Google Scholar

[12] J.M.R.C. Fernando, G.K.R. Senadeera, Natural anthocyanins as photosensitizers for dye-sensitized solar devices, Curr. Sci. 95 (2008) 663–666.

Google Scholar

[13] G. Calogero, G.Di. Marco, Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 92 (2008) 1341–1346.

DOI: 10.1016/j.solmat.2008.05.007

Google Scholar

[14] Q. Dai, J. Rabani, Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes, J. Photochem. Photobiol. A 148 (2002) 17–24.

DOI: 10.1016/s1010-6030(02)00073-4

Google Scholar

[15] N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized tio2 nanocrystalline electrode, J. Phys. Chem. B 101 (1997) 9342–9351.

DOI: 10.1021/jp972197w

Google Scholar

[16] P. Luo, H. Niu, G. Zheng, X. Bai, M. Zhang, W. Wang, From salmon pink to blue natural sensitizers for solar cells: Canna indica L., Salvia splendens, cowberry and Solanum nigrum L., Spectrochim. Acta Part A 74 (2009) 936–942.

DOI: 10.1016/j.saa.2009.08.039

Google Scholar

[17] S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, S. Yamauchi, Characteristics of dyesensitized solar cells using natural dye, Thin Solid Films 518 (2009) 526–529.

DOI: 10.1016/j.tsf.2009.07.045

Google Scholar

[18] C.O. Sreekala, Studies on organic bulk heterojunction devices for photovoltaic solar cell applications, PhD Thesis, Amrita Vishwa Vidyapeetham (2011)

Google Scholar

[19] C. O. Sreekala, I. Jinchu, K. S. Sreelatha, Yojana Janu, Narottam Prasad, Manish Kumar, Amit K. Sadh, and M. S. Roy, Influence of solvents and surface treatment on photovoltaic response of DSSC based on natural curcumin dye, IEEE Journal of Photovoltaics, 2 (2012) 312-319.

DOI: 10.1109/jphotov.2012.2185782

Google Scholar

[20] M. R. Narayan, Review: Dye sensitized solar cells based on natural photosensitizers, Renew. Sustain. Energy Rev., 16 (2012) 208–215.

Google Scholar

[21] A. Jena, S. P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H. K. Narula, S. Mallick and P. Bhargava, Dye sensitized solar cells: A Review, Trans. Ind. Ceram. Soc., 71, (2012) 1-16.

DOI: 10.1080/0371750x.2012.689503

Google Scholar

[22] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Gratzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science, 334, (2011) 629-634.

DOI: 10.1126/science.1209688

Google Scholar

[23] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, A. Hagfeld, 'A New method for manufacturing nanostructured electrodes on plastic substrates, Nano Lett. 1 (2001) 97-102.

DOI: 10.1021/nl0055254

Google Scholar

[24] K. Imoto, K. Takatashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 79 (2003) 459-463.

DOI: 10.1016/s0927-0248(03)00021-7

Google Scholar

[25] Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Application of Poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 31 (2002) 1060-1065

DOI: 10.1246/cl.2002.1060

Google Scholar

[26] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. J. Photochem. Photobiol. A. 164 (2004) 153-158.

DOI: 10.1016/j.jphotochem.2003.11.017

Google Scholar

[27] U. Bach, Solid-state dye-sensitized mesoporous TiO2 solar cells. Ph.D. Thesis, EPFL, (2000).

Google Scholar

[28] J. Krüger, Interface engineering in solid-state dye-sensitized solar cells. PhD. Thesis, EPFL, (2003).

Google Scholar

[29] R. Willecke, F. Faupel, Diffusion of gold and silver in bisphenol trimethylcyclohexanen polycarbonate. J. Polym. Sci. Part B. 35 (1997) 1043-1048.

DOI: 10.1002/(sici)1099-0488(199705)35:7<1043::aid-polb3>3.0.co;2-x

Google Scholar

[30] A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, Morphology and thermal stability of metal contacts on crystalline organic thin films. Adv. Mater. 14 (2002) 961-963.

DOI: 10.1002/1521-4095(20020705)14:13/14<961::aid-adma961>3.0.co;2-x

Google Scholar

[31] M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers, Oxford University Press 2nd ed., New York (1999).

Google Scholar

[32] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res. 42 (2009) 1788–1798.

DOI: 10.1021/ar900141y

Google Scholar

[33] Zhou H, Wu L, Gao Y, Ma T. Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A: Chem. 219 (2011) 188–194.

DOI: 10.1016/j.jphotochem.2011.02.008

Google Scholar

[34] Wongcharee K, Meeyoo V, Chavadej S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energy Mater. Sol. Cells, 91 (2007) 566–571.

DOI: 10.1016/j.solmat.2006.11.005

Google Scholar

[35] Hao S, Wu J, Huang Y, Lin J. Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80 (2006) 209–214.

DOI: 10.1016/j.solener.2005.05.009

Google Scholar

[36] Gòmez-Ortíz NM, Vázquez-Maldonado IA, Pérez-Espadas AR, Mena-Rejón GJ, Azamar-Barrios JA, Oskam G. Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells, 94 (2009) 40-44.

DOI: 10.1016/j.solmat.2009.05.013

Google Scholar

[37] Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M, Kurita O.Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol. Energy 81 (2007) 512–516.

DOI: 10.1016/j.solener.2006.08.003

Google Scholar

[38] Polo AS, Iha NYM. Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energy Mater. Sol. Cells, 90 (2006) 1936–1944.

DOI: 10.1016/j.solmat.2006.02.006

Google Scholar

[39] Calogero G, Marco GD. Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells, 92 (2008) 1341–1346.

DOI: 10.1016/j.solmat.2008.05.007

Google Scholar

[40] R. Ali, N. Nayan. Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit. International Journal of Integrated Engineering 2 (2010) 55–62.

Google Scholar

[41] Bazargan MH. Performance of nanostructured dye-sensitized solar cell utilizing natural sensitizer operated with platinum and carbon coated counter electrodes digest. J. Nanomater. Biostruct. 4 (2009) 723–727.

Google Scholar

[42] Calogero G, Marco GD, Cazzanti S, Caramori S, Argazzi R, Carlo AD, et al. Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits. International Journal of Molecular Sciences 11 (2010) 254–267.

DOI: 10.3390/ijms11010254

Google Scholar

[43] Kumara GRA, Kaneko S, Okuya M, Onwona-Ageyeman B, Konno A, Tennakone K. Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells, 90 (2006) 1220–1226.

DOI: 10.1016/j.solmat.2005.07.007

Google Scholar

[44] Hernández-Martínez AR, Vargas S, Estevez M, Rodríguez R. Dye-sensitized solar cells from extracted bracts bougainvillea betalain pigments. In: 1st International Congress on Instrumentation and Applied Sciences (2010) 1–15.

DOI: 10.3390/ijms12095565

Google Scholar

[45] Chang H, Wu HM, Chen TL, Huang KD, Jwo CS, Lo YJ. Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. Journal of Alloys and Compounds 495 (2010) 606–610.

DOI: 10.1016/j.jallcom.2009.10.057

Google Scholar

[46] Lai WH, Sub YH, Teoh LG, Hona MH. Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiol. A: Chem. 195 (2008) 307–313.

DOI: 10.1016/j.jphotochem.2007.10.018

Google Scholar