4H-SiC P+N UV Photodiodes for Space Applications

Article Preview

Abstract:

Spectral sensitivity measurements versus temperature have been carried out on irradiated SiC p+n photodiodes, fabricated using two different doping processes: Aluminium standard implantation and Boron plasma immersion ion implantation. The spectral sensitivity of Al doped photodiodes increase for incident wavelength higher than 270 nm, and are very stable below. Boron doped irradiated photodiodes show a general increase of the photoresponse for all wavelengths. In both cases, an hysteresis effect is observable when with the temperature. Results are presented and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 821-823)

Pages:

644-647

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] F. Issa, V. Vervisch, L. Ottaviani, D. Szalkai, L. Vermeeren, A. Lyoussi, A. Kuznetsov, M. Lazar, A. Klix, O. Palais, et A. Hallén, « Nuclear Radiation Detectors Based on 4H-SiC p(+)-n Junction », Edited by: Okumura, H; Harima, H; Kimoto, T; et al. Conference: 15th International Conference on Silicon Carbide and Related Materials (ICSCRM 2013) Location: Miyazaki, JAPAN Date: SEP 29-OCT 04, 2013. Mater. Sci. Forum, vol. 778‑780, p.1046‑1049, (2014).

DOI: 10.4028/www.scientific.net/msf.778-780.1046

Google Scholar

[2] S. Biondo, L. Ottaviani, M. Lazar, D. Planson, J. Duchaine, V. Le Borgne, M. A. El Khakani, F. Milesi, W. Vervisch, O. Palais, et F. Torregrosa, « 4H-SiC P+N UV Photodiodes : A Comparison between Beam and Plasma Doping Processes », Mater. Sci. Forum, vol. 717‑720, p.1203‑1206, (2012).

DOI: 10.4028/www.scientific.net/msf.717-720.1203

Google Scholar

[3] « http: /www. ion-beam-services. com/nano_sys. htm.

Google Scholar

[4] B. Bérenguier, L. Ottaviani, S. Biondo, O. Palais, M. Lazar, F. Milesi, F. Torregrosa, E. Kalinina, A. Lebedev, W. Vervisch, et A. Lyoussi, « 4H-SiC P+N UV Photodiodes: Influence of Temperature and Irradiation », MRS Online Proc. Libr., vol. 1693, (2014).

DOI: 10.1557/opl.2014.565

Google Scholar

[5] H. Y. Tada et J. R. Carter, Solar cell radiation handbook. (1977).

Google Scholar

[6] N. Watanabe, T. Kimoto, et J. Suda, « 4H-SiC pn Photodiodes with Temperature-Independent Photoresponse up to 300 degrees C », Appl. Phys. Express, vol. 5, no 9, (2012).

DOI: 10.1143/apex.5.094101

Google Scholar

[7] B. Chen, Y. Yang, X. Xie, N. Wang, Z. Ma, K. Song, et X. Zhang, « Analysis of temperature-dependent characteristics of a 4H-SiC metal-semiconductor-metal ultraviolet photodetector », Chin. Sci. Bull., vol. 57, no 34, p.4427‑4433, (2012).

DOI: 10.1007/s11434-012-5494-3

Google Scholar

[8] T. V. Blank, Y. A. Goldberg, et O. V. Konstantinov, « Temperature dependence of the performance of ultraviolet detectors », Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 509, no 1‑3, p.109‑117, (2003).

DOI: 10.1016/s0168-9002(03)01558-4

Google Scholar

[9] T. V. Blank, Y. A. Goldberg, E. V. Kalinina, O. V. Konstantinov, A. O. Konstantinov, et A. Hallén, « Temperature dependence of the photoelectric conversion quantum efficiency of 4H-SiC Schottky UV photodetectors », Semicond. Sci. Technol., vol. 20, no 8, p.710, (2005).

DOI: 10.1088/0268-1242/20/8/010

Google Scholar