Rheology and Kinetics of Pressure Sintering

Article Preview

Abstract:

The rheological viscous flow model of deformable, irreversibly compressible, porous body based on mechanics of continua, and creep theory of crystalline materials, is used to describe quantitatively the sintering of powder materials with pressure in isothermal and nonisothermal conditions. Densification of the porous body occurs under action of Laplace pressure, generated by surface tension, and applied pressure. The densification kinetics of porous metals and crystalline compounds in initial and intermediate stages of sintering with static external pressure represent nonlinear steady-state creep controlled by a climb dislocation mechanism in solid matrix forming porous material. Activation energies of this mechanism are consistent with the bulk diffusion. A diffusional creep controls the pressure sintering kinetics in a later stage. The rheological models of deformable viscoelastic bodies and the associated dynamic strain theory for viscoelastic irreversibly compressible bodies, based on the energy conservation law, enable a quantitative description of their densification under dynamic loading. At the same time it is taking into account the internal energy of deformable body. The solutions of dynamic systems involve the mechanical interaction of compacting machine with this body. The simulation of impact sintering of porous metals shows that the viscosity of the matrix, that forms the porous body, and the activation energy of viscous deformation dramatically decrease with increasing initial impact velocity. This promotes the compaction of the material to practically nonporous state and enhances its mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-105

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] C.G. Goetzel, Treatise on Powder Metallurgy, Volume II, Applied and Physical Powder Metallurgy, Interscience Publishers Inc., New York, (1950).

DOI: 10.1126/science.113.2934.336

Google Scholar

[2] G.V. Samsonov, M.S. Kovalchenko, Hot pressing [in Russian], State Technical Publ. of Ukrainian SSR, Kiev, (1962).

Google Scholar

[3] R.M. German, Sintering: From Empirical Observations to Scientific Principles, Elsevier Inc., Butterworth-Heinemann, Oxford, (2014).

Google Scholar

[4] Y.I. Frenkel, Viscous flow of crystalline bodies under the action of surface tension. J. Phys. USSR 9 (1945) 385 – 391.

Google Scholar

[5] C. Herring, Diffusional viscosity of polycrystalline solid, J. Appl. Phys. 21 (1950) 437 – 445.

Google Scholar

[6] Y.E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow, (1967).

Google Scholar

[7] A.M. Nikolenko, Hierarchic material structure, Powder Metall. Met. Ceram. 41 (2002) 317 – 334.

Google Scholar

[8] A.N. Nikolenko, M.S. Kovalchenko, Analysis of the random packing of identical particles: IV. Zonal isolation during sintering, Powder Metall. Met. Ceram. 25 (1986) 96–99.

DOI: 10.1007/bf00805600

Google Scholar

[9] R.M. German, Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, (1989).

Google Scholar

[10] B.A. Druyanov, Applied Plasticity Theory for Porous Bodies [in Russian], Mashinostroenie Publ., Moscow, (1989).

Google Scholar

[11] H. Lamb, Hydrodynamics, Dover, New York, (1945).

Google Scholar

[12] L. D. Landau, E. M. Lifshits, Theory of Elasticity, Pergamon Press, New York, (1986).

Google Scholar

[13] V.V. Skorokhod, Rheological Bases of Sintering Theory [in Russian], Naukova Dumka, Kiev, (1972).

Google Scholar

[14] M.S. Kovalchenko, Elasticity and viscosity of isotropic porous materials, Powder Metall. Met. Ceram. 42 (2003), 81 – 87.

Google Scholar

[15] M.S. Kovalchenko, Strain hardening of a powder body in pressing, Powder Metall. Met. Ceram. 48 (2009) 133 – 144.

DOI: 10.1007/s11106-009-9118-7

Google Scholar

[16] M. B. Shtern, A model of the processes of deformation of compressible materials with an allowance made for pore formation: II. Uniaxial tension and compression of porous bodies, Powder Metall. Met. Ceram. 28 (1989) 446 – 451.

DOI: 10.1007/bf00795298

Google Scholar

[17] Zhao Y.H., G.P. Tandon, G.J. Weng, Elastic moduli for a class of porous materials / Acta Mech. 76 (1989) 105 – 136.

Google Scholar

[18] R. Cytermann, Contiguity and properties of porous materials, in: Fragmentation Form and Flow in Fractured Media, Proc. III conf., Hilger, Bristol, 1986, p.458 – 472.

Google Scholar

[19] A.G. Zherdin, Y.N. Podrezov, S.A. Fitstov, L.T. Shtyka, Effect of porosity on microplastic deformation of iron-based powder materials, Powder Metall. Met. Ceram. 28 (1989) 579 – 584.

DOI: 10.1007/bf00794875

Google Scholar

[20] J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, Oxford, (1957).

Google Scholar

[21] D.S. Wilkinson, M.F. Ashby, Pressure sintering by power law creep, Acta Met. 23 (1975) 1277–1285.

DOI: 10.1016/0001-6160(75)90136-4

Google Scholar

[22] M.S. Kovalchenko, Pressure sintering of powder materials, Powder Metall. Met. Ceram. 50 (2011) 18 – 33.

DOI: 10.1007/s11106-011-9299-8

Google Scholar

[23] J. Williams, The hot compacting of metal powders, in: Symp. Powder Met., Iron and Steel Inst., London, 1954, p.112 – 123.

Google Scholar

[24] V.G. Kayuk, M.S. Kovalchenko, I.S. Martsenyuk, O.N. Grigoryev, Effect of the nickel-chromium binder on the densification kinetics of chromium carbide-titanium nitride cermets in hot pressing, Powder Metall. Met. Ceram. 46 (2007) 228 – 235.

DOI: 10.1007/s11106-007-0037-1

Google Scholar

[25] J. Friedel, Dislocations, Pergamon Press, Oxford, (1964).

Google Scholar

[26] J. Weertman, Theory of steady-state creep based on dislocation climb, J. Appl. Phys. 26 (1955) 1213 – 1217.

DOI: 10.1063/1.1721875

Google Scholar

[27] F.R.N. Nabarro, Deformation of crystal by motions of single ions, Rept. Conf. Strength Mater. University Bristol, July 1947, Phys. Soc., London, 1948, p.75–90.

Google Scholar

[28] B.Y. Pines, On sintering (in solid phase), Zh. Tekh. Fiz. 16 (1946) 737 – 745 [in Russian].

Google Scholar

[29] Y.Y. Geguzin, M.A. Krivoglaz, Motion of Macroscopic Defects in Solids [in Russian], Metallurgy Press, Moscow, (1971).

Google Scholar

[30] H. Hamjian, W. Lidman, Densification and kinetics of grain growth during the sintering of chromium carbide, J. Met. 5 (1953) 696 – 699.

Google Scholar

[31] R.L. Coble, Sintering crystalline solids: I. Intermediate and final state diffusion models, J. Appl. Phys. 32 (1961) 787 – 392.

DOI: 10.1063/1.1736107

Google Scholar

[32] R.L. Coble, Sintering crystalline solids: II. Experimental test of diffusion models in powder compacts, J. Appl. Phys. 32 (1961) 793–799.

DOI: 10.1063/1.1736108

Google Scholar

[33] M.S. Kovalchenko, Pressure sintering kinetics of tungsten and titanium carbides, Int. J. Ref. Met. Hard Mat. 39 (2013) 32 – 37.

DOI: 10.1016/j.ijrmhm.2013.03.001

Google Scholar

[34] M.S. Kovalchenko, Y.G. Tkachenko, D.Z. Yurchenko, Kinetics of nonisothermal hot pressing of boron carbide powder and its mixture with alumina and addition of metallic aluminum, Powder Metall. Met. Ceram. 50 (2011) 677 – 682.

DOI: 10.1007/s11106-012-9374-9

Google Scholar

[35] M.S. Kovalchenko, Y.G. Tkachenko, D.Z. Yurchenko, V.F. Britun, Nonisothermal pressure sintering kinetics of the B4C – SiC powder mixture, structure and fracture behavior of sintered composite, Powder Metall. Met. Ceram., 53 (2014) 180 – 190.

DOI: 10.1007/s11106-014-9602-6

Google Scholar

[36] M.S. Kovalchenko, Combined effect of different mechanisms of the flow of a porous polycrystalline solid: I. General theory, Soviet Powd. Metal. Met. Ceram. 30, Issue 7 (1991) 37 –43.

Google Scholar

[37] M.W. Grabski, Structural Superplasticity of Metals [in Polish], Šlásk, Katowice, (1972).

Google Scholar

[38] M. Reiner, Deformation, Strain, and Flow: An elementary introduction to rheology, 2nd ed., Interscience, New York–London, (1960).

DOI: 10.1002/pol.1960.1204614834

Google Scholar

[39] B. Jaoul, Study of the Plasticity and Application of Metals [in French], Dunod, Paris, (1965).

Google Scholar

[40] M.S. Kovalchenko, The dynamics of mechanical actions on materials: I. General theory, Powder Metall. Met. Ceram. 32 (1993) 596 – 601.

DOI: 10.1007/bf00559943

Google Scholar

[41] M.S. Kovalchenko, Rheological models of pressure sintering of powders, Powder Metall. Met. Ceram. 52 (2013) 7 – 20.

DOI: 10.1007/s11106-013-9490-1

Google Scholar

[42] G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, McGraw-Hill Book Company, New York, (1968).

Google Scholar

[43] A. Angot, Complements des mathématiques. A l'usage des ingenieurs de l'electrotechnique et des telecommunications, Editions de la Revue d'Optique, Paris, (1961).

Google Scholar

[44] V.A. Ditkin, A. P. Prudnikov, Integral Transforms and Operational Calculus, Pergamon Press, New York, (1965).

Google Scholar

[45] M.S. Kovalchenko, T.P. Hrebenok, L.F. Ochkas, Simulation of the compaction dynamics of Cu + Al2O3 powder mixture under impulse hot pressing, Powder Metall. Met. Ceram. 49 (2010) 25 – 37.

DOI: 10.1007/s11106-011-9281-5

Google Scholar

[46] M.S. Kovalchenko, A.V. Laptev, Dynamics of WC – Co hard alloy compaction with hot pulsed pressing, Powder Metall. Met. Ceram. 43 (2004) 117–126.

DOI: 10.1023/b:pmmc.0000035698.34943.c6

Google Scholar

[47] M.S. Kovalchenko, L.F. Ochkas, Densification dynamics of copper and iron powder billets in hot shock compaction: Simulation and analysis, Powder Metall. Met. Ceram. 47 (2008) 273 –283.

DOI: 10.1007/s11106-008-9016-4

Google Scholar

[48] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, (1985).

Google Scholar

[49] J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill Book Company, New York, (1968).

Google Scholar

[50] M.S. Kovalchenko, Dynamics of uniaxial tension of a viscoelastic strain-hardening body in a system with one degree of freedom: Communication I. Preset motion of the system, Problems of Strength, 30 (1998) 364 – 373.

DOI: 10.1007/bf02524710

Google Scholar

[51] I.I. Artobolevskii, Theory of Mechanisms [in Russian], Nauka, Moscow, (1967).

Google Scholar