The Influence of Si:Al and Na:Al on the Physical and Microstructure Characters of Geopolymers Based on Metakaolin

Article Preview

Abstract:

A research has been conducted to investigate the physico-mechanical and microstructure properties of geopolymers synthesised from metakaolin activated with sodium silicate solution. A wide range of physical and mechanical properties of geopolymers were studied such as bulk density, porosity, Vickers hardness, compressive strength, thermal expansion and thermal conductivity. It was found that these properties were directly related to geopolymers process variables such as Si:Al, Na:Al, Na2O:H2O, time and curing temperature. The structure of the resulting geopolymers was studied by using X-Ray diffraction (XRD) and the microstructure of geopolymers paste and the interfacial transition zone (ITZ) between the aggregate and the matrix of geopolymer were studied by using Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM). The results gave a new insight into the composition-microstructure-property relationship of geopolymers and paving the way to the production of geopolymers with improved performance in a variety of applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-177

Citation:

Online since:

January 2016

Export:

Price:

[1] Shi C., Krivenko P.V. and Roy D. (2006), Alkali-activated Cements and Concretes, Taylor & Francis, London.

DOI: 10.4324/9780203390672

Google Scholar

[2] Mackenzie, K. J. D. (2003) What are these things called geopolymers? A physico-chemical perspective. Ceramic Transactions, 153, 175–186.

Google Scholar

[3] Rees, C. a., Provis, J. L., Lukey, G. C. and van Deventer, J. s. J. (2007) attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel ageing. Langmuir, 23, 8170–8179.

DOI: 10.1021/la700713g

Google Scholar

[4] Davidovits, J. (1982), Mineral polymers and methods of making them, 4, 349, 386 United States Patent.

Google Scholar

[5] Rahier, H., Van Melle, B., Biesemans, M., Wastiels, J. & Wu, X. (1996), Low-temperature synthesized aluminosilicate glasses Part I Low-temperature reaction stoichiometry and structure of a model compound, Journal of Materials Science, 31, 71-79.

DOI: 10.1007/bf00355128

Google Scholar

[6] Rahier, H., Simons, W., Van Melle, B. & Biesemans, M. (1997).

Google Scholar

[7] Granizo, M. L., Blanco-Varela, M. T. & Palomo, A. (2000).

Google Scholar

[8] Barbosa, V. F. F., MacKenzie, K. J. D. & Thaumaturgo, C. (2000).

Google Scholar

[9] Subaer and Van Riessen, A. (2007) Thermo-mechanical and microstructural characterisation of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers. Journal of Materials Science, 42, 3117–3123.

DOI: 10.1007/s10853-006-0522-9

Google Scholar

[10] Ekaputri, J.J., Triwulan, Subaer, J., Fansuri, H., and Aji R.B., Light Weight Geopolymer Paste made with Sidoarjo Mud (Lusi) , Materials Science Forum Vol. 803 (2015) pp.63-74.

DOI: 10.4028/www.scientific.net/msf.803.63

Google Scholar

[11] Jiang, L. & Guan, Y. (1999), Pore structure and its effect on strength of high-volume fly ash paste, Cement and Concrete Research, 29, 631-633.

DOI: 10.1016/s0008-8846(99)00034-4

Google Scholar

[12] Palomo, A., Grutzeck, M. W. & Blanco, M. T. (1999), Alkali-activated fly ashes A cement for the future, Cement and Concrete Research, 29, 1323-1329.

DOI: 10.1016/s0008-8846(98)00243-9

Google Scholar

[13] van Jaarsveld, J. G. S., van Deventer, J. S. J. & Lorenzen, L. (1997), The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications, Minerals Engineering, 10, (7), 659-669.

DOI: 10.1016/s0892-6875(97)00046-0

Google Scholar

[14] van Jaarsveld, J. G. S. & van Deventer, J. S. J. (1999), The effect of metal contaminants on the formation and properties of waste-based geopolymers, Cement and Concrete Research, 29, 1189-1200.

DOI: 10.1016/s0008-8846(99)00032-0

Google Scholar

[15] Brough, A. R. & Atkinson, A. (2002), Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstructure, Cement and Concrete Research, 32, 1 - 15.

DOI: 10.1016/s0008-8846(02)00717-2

Google Scholar

[16] Swanepoel, J. C. & Strydom, C. A. (2002), Utilisation of fly ash in a geopolymeric material, Applied Geochemistry, 17, (8), 1143 - 1148.

DOI: 10.1016/s0883-2927(02)00005-7

Google Scholar

[17] Cheng, T. W. & Chiu, J. P. (2003), Fire-resistant geopolymer produced by granulated blast furnace slag, Minerals Engineering, 16, 205 - 210.

DOI: 10.1016/s0892-6875(03)00008-6

Google Scholar

[18] Hardjito, D., Wallah, S. E., Sumajouw, D. M. J. and Rangan, B. V. (2004) On the development.

Google Scholar

[19] of fly ash-based geopolymer concrete. ACI Materials Journal, 101, 467–472.

Google Scholar

[20] Xu, H. & van Deventer, J. S. J. (2000), The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 59, 247-266.

DOI: 10.1016/s0301-7516(99)00074-5

Google Scholar

[21] Lyon, R. E., Balaguru, P. N., Foden, A., Sorathia, U., Davidovits, J. & Davidovics, M. (1997), Fire resistant aluminosilicate composites, Fire and Materials, 21, 67-73.

DOI: 10.1002/(sici)1099-1018(199703)21:2<67::aid-fam596>3.0.co;2-n

Google Scholar

[22] Provis, J,L., and van Deventer J.S. J Geopolymers Structure, processing, properties and industrial applications, 2009, Woodhead publishing limited, Oxford.

Google Scholar

[23] Rowles, M. & O'Connor, B. H. (2003), Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite, Journal of materials chemistry, 13, (13), 1-6.

DOI: 10.1039/b212629j

Google Scholar

[24] Grutzeck, M., Kwan, S. & DiCola, M. (2004), Zeolite formation in alkali-activated cementitious systems, Cement & Concrete Research, 32, 949-955.

DOI: 10.1016/j.cemconres.2003.11.003

Google Scholar

[25] Davidovits, J. (1991), Geopolymers: Inorganic Polymeric New Materials, Journal of Thermal Analysis, 37, 1633-1656.

DOI: 10.1007/bf01912193

Google Scholar

[26] Barbosa, V. F. F. & MacKenzie, K. J. D. (2003), Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate, Materials Research Bulletin, 38, (2), 319 - 331.

DOI: 10.1016/s0025-5408(02)01022-x

Google Scholar

[27] Neville, A. M. (2000) Properties of concrete, Prentice Hall, Harlow.

Google Scholar

[28] Hos, J. P., McCormick, P. G. & Byrne, L. T. (2002), Investigation of a synthetic aluminosilicate inorganic polymer, Journal of Materials Science, 37, 2311-2316.

Google Scholar