Surface Modification by Vacuum Arc Plasma Source

Article Preview

Abstract:

In this article features of application of the vacuum arc discharge for modification of surfaces are considered. The complication of o this process simulation due to its complexity and tight correlation between different parameters is explained. The mathematical model describing the interaction of a plasma flux with controlling system is offered. The need of cleaning plasma flux from drop fraction in the process of metal coatings deposition is shown. The properties of coatings received by means of a vacuum arc method are considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

278-283

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] K. Wasa, Handbook of sputter deposition technology: fundamentals and applications for functional thin films, nano-materials and MEMS, William Andrew, Norwich, (2012).

Google Scholar

[2] V.T. Barchenko, Yu.A. Bystrov, E.A. Kolgin, Ion-plasma technologies in electronic production, Energoatomizdat, St. Petersburg, (2001).

Google Scholar

[3] A. Anders, Cathodic Arcs. From Fractal Spots to Energetic Condensation, Springer, New York, (2008).

DOI: 10.1007/978-0-387-79108-1

Google Scholar

[4] Yu.A. Bystrov, N.Z. Vetrov, A.A. Lisenkov, D.K. Kostrin, Technological Capabilities of Vacuum Arc Plasma Sources: Plasmochemical Synthesis of Nitride Compounds, Vakuum in Forschung und Praxis. 5 (2014) 19-23.

DOI: 10.1002/vipr.201400563

Google Scholar

[5] K. Wasa, M. Kitabatake, H. Adachi, Thin film materials technology: sputtering of compound materials, William Andrew, Norwich, (2004).

DOI: 10.1016/b978-081551483-1.50005-8

Google Scholar

[6] I.G. Kesayev, The cathode processes of an electric arc, Science, Moscow, (1968).

Google Scholar

[7] V.T. Barchenko, Yu.A. Bystrov, A.A. Lisenkov, The modern technological processes in production of powerful generating lamps, St. Petersburg State Electrotechnical University, St. Petersburg, (2009).

DOI: 10.17587/nmst.20.58-64

Google Scholar

[8] I.S. Abramov, Yu.A. Bystrov, A.A. Lisenkov, Patent of Russian Federation № 2058423. (1996).

Google Scholar

[9] V.T. Barchenko, N.Z. Vetrov, A.A. Lisenkov, Technological vacuum arc sources of plasma, St. Petersburg State Electrotechnical University, St. Petersburg, (2013).

DOI: 10.17587/nmst.20.58-64

Google Scholar

[10] I.S. Abramov, Yu.A. Bystrov, A.A. Lisenkov, Patent of Russian Federation № 2039849. (1995).

Google Scholar

[11] D.K. Kostrin, A.A. Uhov, Detection and compensating of false spectral lines in a spectrometer with concave diffraction grating, Testing. Diagnostics. 6 (2013) 26-28.

Google Scholar

[12] A.A. Uhov, V.A. Gerasimov, D.K. Kostrin, L.M. Selivanov, Use of compact spectrometer for plasma emission qualitative analysis, Journal of Physics: Conference Series. 567 (2014) 012039.

DOI: 10.1088/1742-6596/567/1/012039

Google Scholar

[13] Yu.A. Bystrov, N.Z. Vetrov, A.A. Lisenkov, Plasmachemical synthesis of aluminum-based nitride compounds in vacuum-arc discharge plasma, Technical Physics Letters. 10 (2012) 938-940.

DOI: 10.1134/s1063785012100173

Google Scholar

[14] Yu.A. Bystrov, D.K. Kostrin, A.A. Lisenkov, N.Z. Vetrov, Сathode sports of vacuum arc discharges: Motion Control on the Working Surface, Vakuum in Forschung und Praxis. 2 (2015) 22-25.

DOI: 10.1002/vipr.201500578

Google Scholar