Structural, Electronic and Optical Properties of Nd-Doped Anatase TiO2 for Dye-Sensitized Solar Cells from Density Functional Theory

Article Preview

Abstract:

The structural, electronic and optical properties of pure and neodymium (Nd) doped anatase titanium dioxide (TiO2) are investigated via first-principles calculations within density functional theory (DFT) approach. The band gap reduces to ~0.398 eV when Ti4+ is substituted with Nd3+ in TiO2 crystal structure. The presence of Nd 4f states in the conduction band of TiO2 clarifies the reducing of the band gap. The dielectric constant and refractive index of Nd-doped TiO2 increase compare to pure TiO2. Nd-doped TiO2 able to enhance light absorption to longer wavelength spectrum. The first-principles results obtained satisfy the criteria for Nd-doped TiO2 to become feasible photoanode material in dye-sensitized solar cell (DSSC) device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

726-733

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] S. Chai, T. Lau, J. Dayou, C. S. Sipaut, R. F. Mansa, Development in Photoanode Materials for High Efficiency Dye Sensitized Solar Cells, Int. J. Renew. Energy Res. 4 (2014).

Google Scholar

[3] N. Park, J. Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B. 104 (2000) 8989-8994.

DOI: 10.1021/jp994365l

Google Scholar

[4] J. Zhang, Z. Zhao, X. Wang, T. Yu, J. Guan, Z. Yu, Z. Li, Z. Zou, Increasing the Oxygen Vacancy Density on the TiO2 Surface by La-Doping for Dye-Sensitized Solar Cells, J. Phys. Chem. C. 114 (2010) 18396-18400.

DOI: 10.1021/jp106648c

Google Scholar

[5] F. Huang, Y. Cheng, R.A. Caruso, Al-doped TiO2 Photoanode for Dye-Sensitized Solar Cells, Aust. J. Chem. 64 (2011) 820-824.

DOI: 10.1071/ch11031

Google Scholar

[6] M. Wang, S. Bai, A. Chen, Y. Duan, Q. Liu, D. Li, Y. Lin, Improved photovoltaic performance of dye-sensitized solar cells by Sb-doped TiO2 photoanode, Electrochim. Acta. 77 (2012) 54-59.

DOI: 10.1016/j.electacta.2012.05.050

Google Scholar

[7] K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, M. Hanaya, Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br3-/Br- redox mediator with a high open-circuit photovoltage of 1. 21 V, Chem. Commun. 49 (2013).

DOI: 10.1039/c2cc36873k

Google Scholar

[8] D.A. Duarte, M. Massi, A.S. da Silva Sobrinho, Development of Dye-Sensitized Solar Cells with Sputtered N-Doped TiO2 Thin Films : From Modeling the Growth Mechanism of the Films to Fabrication of the Solar Cells, Int. J. Photoenergy. (2014).

DOI: 10.1155/2014/839757

Google Scholar

[9] J. Liu, H. Yang, W. Tan, X. Zhou, Y. Lin, Photovoltaic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films, Electrochim. Acta. 56 (2010) 396-400.

DOI: 10.1016/j.electacta.2010.08.063

Google Scholar

[10] M. Geetha, K. Suguna, P.M. Anbarasan, Photoanode Modification in DSSC Using Chromium Doped TiO2 nanoparticles by sol-gel method, Arch. Phys. 3 (2012) 303-308.

Google Scholar

[11] D.A.H. Hanaor, M.H.N. Assadi, S. Li, A. Yu, C. Charles, Ab Initio Study of Phase Stability in Doped TiO2, 50 (2012) 185-194.

DOI: 10.1007/s00466-012-0728-4

Google Scholar

[12] A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, Fabrication of Ni-doped TiO2 thin film photoelectrode for solar cells, Sol. Energy. 106 (2014) 159-165.

DOI: 10.1016/j.solener.2014.02.034

Google Scholar

[13] W. Li, J. Yang, J. Zhang, S. Gao, Y. Luo, M. Liu, Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping, Mater. Res. Bull. 57 (2014) 177-183.

DOI: 10.1016/j.materresbull.2014.05.034

Google Scholar

[14] T.V. Nam, N.T. Trang, B.T. Cong, Mg-doped TiO2 for Dye-Sensitive Solar Cell : An Electronic Structure Study, 37 (2012) 233-242.

Google Scholar

[15] V. Štengl, S. Bakardjieva, N. Murafa, Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles, Mater. Chem. Phys. 114 (2009) 217-226.

DOI: 10.1016/j.matchemphys.2008.09.025

Google Scholar

[16] Q. Yao, J. Liu, Q. Peng, X. Wang, Y. Li, Nd-doped TiO2 nanorods: preparation and application in dye-sensitized solar cells, Chem. Asian J. 1 (2006) 737-741.

DOI: 10.1002/asia.200600195

Google Scholar

[17] T. Hou, J. Mao, H. Pan, M. Tu, Investigation of electronic structure of Nd-doped TiO2 nanoparticles using synchrotron radiation photoelectron spectroscopy, J. Nanoparticle Res. 8 (2006) 293-297.

DOI: 10.1007/s11051-005-9020-2

Google Scholar

[18] B. Shahmoradi, I.A. Ibrahim, N. Sakamoto, S. Ananda, R. Somashekar, T.N.G. Row, K. Byrappa, Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 45 (2010).

DOI: 10.1080/10934529.2010.493807

Google Scholar

[19] M. Mohammadi, N. Shahtahmasebi, M. Karimipour, R. Sarhaddi, Characterization of nanostructured Nd-doped TiO2 thin film synthesized by spray pyrolysis method : Structural, optical and magneto-optical properties, 5 (2012) 2912-2915.

DOI: 10.17485/ijst/2012/v5i6.9

Google Scholar

[20] T. Hou, J. Mao, H. Pan, M. Tu, Investigation of electronic structure of Nd-doped TiO2 nanoparticles using synchrotron radiation photoelectron spectroscopy, J. Nanoparticle Res. 8 (2006) 293-297.

DOI: 10.1007/s11051-005-9020-2

Google Scholar

[21] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie, 220 (2005) 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[22] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[23] N.H. Hussin, M.F.M. Taib, N.A. Johari, F.W. Badrudin, O.H. Hassan, M.Z.A. Yahya, Establishment of Structural and Elastic Properties of Titanate Compounds Based on Pb, Sn and Ge by First-Principles Calculation, Applied Mechanics and Materials. 510 (2014).

DOI: 10.4028/www.scientific.net/amm.510.57

Google Scholar

[24] M.F.M. Taib, M.K. Yaakob, O.H. Hassan, M.Z.A. Yahya, Structural, Electronic, and Lattice Dynamics of PbTiO3, SnTiO3, and SnZrO3: A Comparative First-Principles Study, Integr. Ferroelectri 142 (2013) 119-127.

DOI: 10.1016/j.ceramint.2012.10.081

Google Scholar

[25] M.K. Yaakob, M.F.M. Taib, M.S.M. Deni, M.Z.A. Yahya, Ab Initio Studies on the Structural and Electronic Properties of Bismuth Ferrite Based on Ferroelectric Hexagonal Phase and Paraelectric Orthorhombic Phase, Integr. Ferroelectri 155 (2014).

DOI: 10.1080/10584587.2014.905306

Google Scholar

[26] W. Zhang, T. Hu, B. Yang, P. Sun, H. He, The Effect of Boron Content on Properties of B-TiO2 Photocatalyst Prepared by Sol-gel Method, J. Adv. Oxid. Technol. 16 (2013) 261-267.

DOI: 10.1515/jaots-2013-0206

Google Scholar

[27] E. Sagvolden, J. Perdew, Discontinuity of the exchange-correlation potential: Support for assumptions used to find it, Phys. Rev. A. 77 (2008) 1-11.

DOI: 10.1103/physreva.77.012517

Google Scholar

[28] W. Li, Y. Wang, H. Lin, S.I. Shah, C.P. Huang, D.J. Doren, S.A. Rykov, J.G. Chen, M.A. Barteau, Band gap tailoring of Nd3+-doped TiO2 nanoparticles, Appl. Phys. Lett. 83 (2003) 4143-4145.

DOI: 10.1063/1.1627962

Google Scholar

[29] P.R. Bueno, C. Gabrielli, Electrochemistry, Nanomaterials, and Nanostructures, in: Nanostructured Materials for Electrochemical Energy Production and Storage, 2009, pp.81-149.

DOI: 10.1007/978-0-387-49323-7_3

Google Scholar

[30] A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cells. 44 (1996) 99-117.

DOI: 10.1016/0927-0248(96)00063-3

Google Scholar