Application of TiO2 Nanoparticle in Photocatalytic Degradation of Organic Pollutants

Article Preview

Abstract:

Heavy industrialization, specifically in the developing countries, has generated several unwanted environmental pollution. A variety of toxic organic compounds is produced in chemical and petroleum industries, which have resulted in collectively hazardous effects on the environment that needs immediate attention for remediation. Degradation of these pollutants has been tried through the various mechanism, out of which photocatalytic degradation seems to be one of the most promising approaches to reduce environmental pollution specifically in waste water treatment. Photocatalytic degradation has potential for the effective decomposition of organic pollutants due to efficiency to convert light energy into chemical energy. Additionally, the photocatalytic oxidation process is an advanced technique as it offers high degradation and effective mineralization at moderate temperature and specific radiation wavelength. Among various known photocatalysts, TiO2 is regarded as the one of the potential photocatalysts because of its hydrophilic property, high reactivity, reduced toxicity, chemical stability and lower costs. Therefore, the present chapter focuses on the role of TiO2 as the photocatalyst for the degradation of organic pollutants. The general mechanism of degradation of organic pollutants along with properties of TiO2 as the photocatalyst, existing mechanism of degradation via TiO2 was explained. The possible approaches to enhance degradation via TiO2 nanoparticle along with existing bottlenecks have been also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-32

Citation:

Online since:

May 2016

Export:

Price:

[1] H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia and I.M. Hasnain, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, J. Industrial and Engg. Chemistry, 26 (2015).

DOI: 10.1016/j.jiec.2014.10.043

Google Scholar

[2] N. Nuhoglu and B. Yalcin, Modeling of phenol removal in a batch reactor, J. Pro Biochem, 40 (3-4) (2005) 1233–1239.

DOI: 10.1016/j.procbio.2004.04.003

Google Scholar

[3] Y. Jiang, J.P. Wen, J. Bai, D.Q. Wang, and Z.D. Hu, Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol, J. Biochem Engg., 29 (3) (2006) 227–234.

Google Scholar

[4] N.G. Buckman, J.O. Hill, and R.J. Magee, Separation of substituted phenols, including eleven priority pollutants using high-performance liquid chromatography, J. Chromatogr, 284 (1984) 441-446.

DOI: 10.1016/s0021-9673(01)87845-6

Google Scholar

[5] ATSDR/CDC. Subcommittee report on biological indicators of organ damage. Agency for Toxic Substances and Disease Registry, Centres for Disease Control and Prevention, Atlanta GA (1990).

Google Scholar

[6] M.N. Chong, C.W.K. Chow, B. Jin, and C. Saint, Recent Developments in Photocatalytic, Water Treatment Catal. Technol.: A Review. Water Research, 44 (2010) 2997-3027.

DOI: 10.1016/j.watres.2010.02.039

Google Scholar

[7] Y.T. Wei, Y.Y. Wang and C. Wan, Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders, J. of Photochem. and Photobiol. A: Chemistry, 55 (1990) 115-126.

DOI: 10.1016/1010-6030(90)80024-r

Google Scholar

[8] B. Carre, D. Cubyanes, P. d'Oliveira, M. Ferray, P. Fournier and F. Gounand, Photoionization of highly excited atomic sodium involving core-excited resonances, Zeitschrift für Physik D, 15 (2) (1990) 117-132.

DOI: 10.1007/bf01437005

Google Scholar

[9] H. Shu, J. Xie, H. Xu, H. Li, Z. Gu, G. Sun and Y. Xu, Structural characterization and photocatalytic activity of NiO/AgNbO3, J. Alloys Compd., 496 (2010) 633–637.

DOI: 10.1016/j.jallcom.2010.02.148

Google Scholar

[10] A. Fujishima, and K. Honda, Electrochemical photolysis of water at semiconductor Electrode, J. Nature, 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[11] S. Helali, C. Guillard, N. Perol, E. Puzenat and M.J. Safi, Methylamine and dimethylamine photocatalytic degradation-Adsorption isotherms and kinetics, Appl. Catal. A: General, 402 (2011) 201-207.

DOI: 10.1016/j.apcata.2011.06.004

Google Scholar

[12] Y. Li, Li. Leiyong, Li. Chenwan, W. Chen and M. Zeng, Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity, Appl. Catal. A: General, 427 (428) (2012) 1-7.

DOI: 10.1016/j.apcata.2012.03.004

Google Scholar

[13] A.A. Vega, G.E. Imoberdorf, M. Mohseni, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid in a fluidised bed photoreactor with composite template-free TiO2 photocatal., Appl. Catal. A, 405 (2011) 120-128.

DOI: 10.1016/j.apcata.2011.07.033

Google Scholar

[14] J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999), 115-129.

DOI: 10.1016/s0920-5861(99)00107-8

Google Scholar

[15] M. Aslam, I.M. Ismail, S. Chandrasekaran AND A. Hameed, Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols, J. Hazard Mater. 276C (2014) 120-128.

DOI: 10.1016/j.jhazmat.2014.05.022

Google Scholar

[16] J. Bandara, U. Klehm and J. Kiwi, Raschig rings Fe2O3 composite photoCatal. activate in the degradation of 4 chlorophenol and orange II under daylight irradiation, Appl. Catal. B environ. 34 (2007) 321- 333.

DOI: 10.1016/j.apcatb.2007.05.007

Google Scholar

[17] R. Hengerer, B. Bolliger, M. Erbudak and M. Grätzel, Structure and stability of the anatase TiO2 (101) and (001) surfaces, Surface Sci., 460 (2000) 162–169.

DOI: 10.1016/s0039-6028(00)00527-6

Google Scholar

[18] G.L. Puma, A. Bono, D. Krishnaiah and J.G. Collin, Preparation of titanium dioxide photoCatal. loaded onto activated carbon support using chemical vapor deposition: A review paper, J. of Hazard. Mater., 157 (2008) 209–219.

DOI: 10.1016/j.jhazmat.2008.01.040

Google Scholar

[19] G. Meacock, K.D.A. Taylor, M. Knowles and A. Himonides, The improved whitening of minced cod flesh using dispersed titanium dioxide, J. Sci. Food Agric., 73 (2) (1997) 221–225.

DOI: 10.1002/(sici)1097-0010(199702)73:2<221::aid-jsfa708>3.0.co;2-u

Google Scholar

[20] S. Gupta, Mital and M. Tripathi, A review of TiO2 nanoparticles, Chinese Sci. Bulletin, 56 (2011).

Google Scholar

[21] A.T. Paxton and L. Thiên-Nga, Electronic structure of reduced titanium dioxide, Phys. Rev. B, 57 (1998) 1579–1584.

DOI: 10.1103/physrevb.57.1579

Google Scholar

[22] S. Banerjee, J. Gopal, P. Muraleedharan, B. Raj and A.K. Tyagi, Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy, Current Sci., 90 (2006) 1378–1383.

Google Scholar

[23] R. Kun, S. Tarján, A. Oszkó, T. Seemann, V. Zöllmer, M. Busse and I. Dékány, Prepa-ration and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO2 Catal. s and their photocatalytic activity under UV and Vis illumination, J. Solid State Chem., 182 (2009).

DOI: 10.1016/j.jssc.2009.08.022

Google Scholar

[24] S. Carbonaro, T.J. Strathmann and M.N. Sugihara, Continuous-flow photocatalytic treatment, Appl. Catal. B: Environ., 129 (2013) 1-12.

Google Scholar

[25] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff and K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int'l J. of Electrochem. Sci., 7 (2012).

DOI: 10.1016/s1452-3981(23)19588-5

Google Scholar

[26] M. A. Barakat, H. Schaeffera, G. Hayes, and S. Ismat-Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles, Appl. Catal. B: Environ., 57 (2005) 23–30.

DOI: 10.1016/j.apcatb.2004.10.001

Google Scholar

[27] F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen and C.C. Chen, Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2, Separation and publication Technol., 62 (2008) 423-436.

DOI: 10.1016/j.seppur.2008.02.006

Google Scholar

[28] M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin and J. Wu, Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes and Pigments, 77 (2008) 2 327–334.

DOI: 10.1016/j.dyepig.2007.01.026

Google Scholar

[29] N. Sobana, K. Selvam and M. Swaminathan, Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2, Separation and Purification Catal. Technol., 62 (2008) 3 648–653.

DOI: 10.1016/j.seppur.2008.03.002

Google Scholar

[30] M. J. Pawar and V. B. Nimbalkar, Synthesis and phenol degradation activity of Zn and Cr doped TiO2 nanoparticles, Research J. of Chem. Sci., 2 (2012) 1 32–37.

Google Scholar

[31] R. Rajeshwari and S. Kanmani, A study on degradation of pesticide wastewater by TiO2 photocatalysis. J. of Scientific & Industrial Research, 68 (2009) 1063-1067.

Google Scholar

[32] V. Buscio, S. Brosillon, J. Mendret , M. Crespi and C. Gutiérrez-Bouzán, Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73, J. Mater. 8 (2015) 3633-3647.

DOI: 10.3390/ma8063633

Google Scholar

[33] A.E. Cassano and O.M. Alfano, Reaction Engg. of suspended solid heterogeneous photocatalytic reactors, Catal. Today, 58 (2–3) (2000) 167–197.

DOI: 10.1016/s0920-5861(00)00251-0

Google Scholar

[34] H.P. Shivaraju, Removal of Organic Pollutants in the Municipal Sewage Water by TiO2 based Heterogeneous Photocatalysis. Int'l J. of Environ. Sci. 1 (2011) 911–923.

Google Scholar

[35] M. Muruganandham and M. Swaminathan, TiO2-UV photocatalytic oxidation of Reactive Yellow 14: effect of operational parameters. J. Hazard. Mater., 135 (1-3) (2006) 78-86.

DOI: 10.1016/j.jhazmat.2005.11.022

Google Scholar

[36] J.L. Shie, C.H. Lee, C.S. Chiou, C.T. Chang, C.C. Chang and C.Y. Chang, Photdegra-dation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium dioxide photoCatal., J. of Hazard. Mater. 155 (2008).

DOI: 10.1016/j.jhazmat.2007.11.043

Google Scholar

[37] A. Jamalia, R. Vanraesb, P. Hanselaerb, T. Van Gervena, A batch LED reactor for the photocatalytic degradation of phenol, J. of Chem. Engg. and Processing, 71 (2013) 43– 50.

Google Scholar

[38] K. Dai, L. Lub, C. Liangc, Q. Liud, G. Zhua, Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation Appl. Catal. B: Environ. 156–157 (2014) 331–340.

DOI: 10.1016/j.apcatb.2014.03.039

Google Scholar

[39] U.I. Gaya and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C. Photochem. Rev., 9 (1) (2008) 1-12.

DOI: 10.1016/j.jphotochemrev.2007.12.003

Google Scholar

[40] S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol., 73 (2010) 71–91.

DOI: 10.1016/j.seppur.2010.03.021

Google Scholar

[41] H.Y. Kim, A.M. Nasser, M. Barakata and I.S.C. Kanjwalc, Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: Negative impact with the nanofibers, J. of Molecular Catal. A: Chem. 366 (2013) 333– 340.

DOI: 10.1016/j.molcata.2012.10.012

Google Scholar

[42] B.M. Hussaina, N. Russoa and G. Saraccoa, Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles Chem. Engg. J. 166 (2011) 138–149.

Google Scholar

[43] S.J. Yoo, D.H. Kwak, K.G. Kim, K.J. Hwang, J.W. Lee, U.Y. Hwang, H.S. Park and J.O. Kim. Photocatalytic degradation of methylene blue and acetaldehyde by TiO2/glaze coated porous red clay tile. Korean J. Chem. Engg., 25 (5) (2008) 1232-1238.

DOI: 10.1007/s11814-008-0204-1

Google Scholar

[44] R. Thiruvenkatachari, S. Vigneswaran and S. Moon, A review on UV/TiO2 photocatalytic oxidation process (J. Review). Korean J. Chem. Engg., 25 (2008) 64-72.

DOI: 10.1007/s11814-008-0011-8

Google Scholar

[45] N. Guettai and H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination, 185 (2005) 427-437.

DOI: 10.1016/j.desal.2005.04.048

Google Scholar

[46] W. Bahnemann, M.M. Haque and M. Muneer, Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal. Today, 124 (3-4) (2007) 133–148.

DOI: 10.1016/j.cattod.2007.03.031

Google Scholar

[47] R.C.M. Disha, A Study on Rate of Decolorization of Textile Azo Dye Direct Red 5B by Recently Developed PhotoCatal., Int'l J. of Scientific and Research Publications, 3 (2013) 2250-3153.

Google Scholar

[48] D. Chen and A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Resources 32 (1998) 3223-3234.

DOI: 10.1016/s0043-1354(98)00118-3

Google Scholar

[49] M. Abdullah, G.K.C. Low and R.W. Matthews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem., 94 (1990) 6820-6825.

DOI: 10.1021/j100380a051

Google Scholar

[50] J.C. Crittenden, D.W. Hand, E.G. Marchand, D.L. Perram and Y. Zhang, Solar detoxification of fuel-contaminated groundwater using fixed-bed photoCatal., Water Environ. Research, 68 (1996) 270-278.

DOI: 10.2175/106143096x127703

Google Scholar

[51] M.H. Habibi, A. Hassanzadeh and S. Mahdavi, The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions, J. Photochem. and Photobiol. A: Chem., 172 (2005) 89-96.

DOI: 10.1016/j.jphotochem.2004.11.009

Google Scholar

[52] W. Baran, A. Makowski, W. Wardas, The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions Chemosphere, 53 (2003) 87–95.

DOI: 10.1016/s0045-6535(03)00435-1

Google Scholar

[53] C. Hu, J.C. Yu, Z. Hao and P.K. Wong, Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes Appl. Catal. B: Environ. 46 (2003) 35–47.

DOI: 10.1016/s0926-3373(03)00139-5

Google Scholar

[54] J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, S. Malato and J.V. Weber, Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts. Appl. Catal. B-Environ., 53 (2) (2004).

DOI: 10.1016/j.apcatb.2004.04.017

Google Scholar

[55] U. Muhammad and A.A. Hamidi, Photocatalytic Degradation of Organic Pollutants in Water, Organic Pollutants - Monitoring, Risk and Treatment, Intech Open, (2013).

DOI: 10.5772/53699

Google Scholar

[56] D. Ollis and H. Al-Elkabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier Sci. Ltd., (1993) 481-494.

Google Scholar

[57] K.J. Green and R.J. Rudham, Photocatalytic oxidation of propan-2-ol by semiconductor–zeolite composites. J. Chem. Soc., Faraday Trans., 89 (11) (1993) 1867–1870.

DOI: 10.1039/ft9938901867

Google Scholar

[58] T. Szabóa, A. Veresa, E. Cho, J. Khimb, N. Vargaa and I. Dékány, PhotoCatal. separation from aqueous dispersion using grapheme oxide/ TiO2 nanocomposites. Colloids and Surfaces A: Physicochem. Engg. Aspects, 433 (2013) 230– 239.

DOI: 10.1016/j.colsurfa.2013.04.063

Google Scholar

[59] M. Maicu, M.C. Hidalgo, G. Colón and J.A. Navío, Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J. of Photochem. and Photobiol. A: Chemistry, 217 (2011)  275–283.

DOI: 10.1016/j.jphotochem.2010.10.020

Google Scholar

[60] G. Halasi, F. Solymosi and I. Ugrai, Photocatalytic decomposition of ethanol on TiO2 modified by N and promoted by metals. J. Catal., 281 (2011) 309–317.

DOI: 10.1016/j.jcat.2011.05.016

Google Scholar

[61] R. Asahi, K. Aoki, T. Morikawa, T. Ohwaki and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium dioxides. Sci., 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[62] H. Irie, K. Hashimoto and Y. Watanabe, Nitrogen concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B, 107 (2003) 5483-5486.

DOI: 10.1021/jp030133h

Google Scholar

[63] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Visible-light-active titanium dioxide photoCatal. realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ., 42 (2003) 403-409.

DOI: 10.1016/s0926-3373(02)00269-2

Google Scholar

[64] A. Fujishima, D.A. Tryk and X. Zhang, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[65] Q. Chen, D. Jiang, W. Shi, D. Wu and Y. Xu, Visible-light-activated Ce–Si co-doped TiO2 photoCatal. Appl. Surface Sci., 255 (2009) 7918–7924.

DOI: 10.1016/j.apsusc.2009.04.167

Google Scholar

[66] R. Matthews, Solar-electricwater purification using photocatalytic oxidationwith TiO2 as a stationary phase. Solar Energy, 38 (6) (1987) 405–413.

DOI: 10.1016/0038-092x(87)90021-1

Google Scholar

[67] M. Bideau, B. Claudel, C. Dubien, L. Faure and H. Kazouan, On the immobilization, of titanium dioxide in the photocatalytic oxidation of spent waters. J. Photochem. Photobiol. A, 91 (2) (1995) 137–144.

DOI: 10.1016/1010-6030(95)04098-z

Google Scholar

[68] R. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem. 91 (12) (1987) 3328–3333.

DOI: 10.1021/j100296a044

Google Scholar

[69] M. Xiaojun, Y. Hongmei, Y. Lili, C. Yin and L. Ying, Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation J. Mater., 7 (2014) 4431-4441.

DOI: 10.3390/ma7064431

Google Scholar

[70] I.R. Bellobono, M. Bonardi, L. Castellano, E. Selli and L. Righetto, Degradation of some chloro-aliphatic water contaminants by photocatalytic membranes immobilizing titanium dioxide, J. Photochem. Photobiol. A 67 (1) (1992) 109–115.

DOI: 10.1016/1010-6030(92)85173-r

Google Scholar

[71] K. Kato, Photocatalytic property of TiO2 anchored on porous alumina ceramic support by the alkoxide method, J. Ceram. Soc. Jpn. 101 (3) (1993) 245–249.

DOI: 10.2109/jcersj.101.245

Google Scholar

[72] M. Anderson, M.J. Gieselmann and Q. Xu, Titania and alumina ceramic membranes, J. Membr. Sci. 39 (3) (1988) 243–258.

DOI: 10.1016/s0376-7388(00)80932-1

Google Scholar

[73] R. Mariscal, J.M. Palacios, M. Galan-Ferreres and J.L.G. Fierro, Incorporation of titania into preshaped silica monolith structures, Appl. Catal. A 116 (1–2) (1994) 205–219.

DOI: 10.1016/0926-860x(94)80290-4

Google Scholar

[74] Y. Xu and H. Langford, Enhanced photoactivity of a titanium (iv) oxide supported on zsm5 and zeolite a at low coverage, J. Phys. Chem. 99 (29) (1995) 11501–11507.

DOI: 10.1021/j100029a031

Google Scholar

[75] Y.M. Gao, H.S. Shen, K. Dwight and A. Wold, Preparation and photocatalytic properties of titanium (IV) oxide films, Mater. Res. Bull. 27 (9) (1992) 1023–1030.

DOI: 10.1016/0025-5408(92)90240-z

Google Scholar