High-Mobility SiC MOSFETs with Alkaline Earth Interface Passivation

Article Preview

Abstract:

Alkaline earth elements Sr and Ba provide SiO2/SiC interface conditions suitable for obtaining high channel mobility metal-oxide-semiconductor field-effect-transistors (MOSFETs) on the Si-face (0001) of 4H-SiC, without the standard nitric oxide (NO) anneal. The alkaline earth elements Sr and Ba located at/near the SiO2/SiC interface result in field-effect mobility (μFE) values as high as 65 and 110 cm2/V.s, respectively, on 5×1015 cm-3 Al-doped p-type SiC. As the SiC doping increases, peak mobility decreases as expected, but the peak mobility remains higher for Ba interface layer (Ba IL) devices compared to NO annealed devices. The Ba IL MOSFET field-effect mobility decreases as the temperature is increased to 150 °C, as expected when mobility is phonon-scattering-limited, not interface-trap-limited. This is in agreement with measurements of the interface state density (DIT) using the high-low C-V technique, indicating that the Ba IL results in lower DIT than that of samples with nitric oxide passivation. Vertical power MOSFET (DMOSFET) devices (1200V, 15A) fabricated with the Ba IL have a 15% lower on-resistance compared to devices with NO passivation. The DMOSFET devices with a Ba IL maintain a stable threshold voltage under NBTI stress conditions of-15V gate bias stress, at 150 °C for 100hrs, indicating no mobile ions. Secondary-ion mass-spectrometry (SIMS) analysis confirms that the Sr and Ba remain predominantly at the SiO2/SiC interface, even after high temperature oxide annealing, consistent with the observed high channel mobility after these anneals. The alkaline earth elements result in enhanced SiC oxidation rate, and the resulting gate oxide breakdown strength is slightly reduced compared to NO annealed thermal oxides on SiC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

671-676

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] P.D. Kirsch P. Sivasubramani, J. Huang, C.D. Young, M.A. Quevedo-Lopez, H.C. Wen, H. Alshareef, K. Choi, C.S. Park, K. Freeman, M.M. Hussain, G. Bersuker, H.R. Harris, P. Majhi, R. Choi, P. Lysaght, B.H. Lee, H. -H. Tseng, R. Jammy, T.S. Böscke, D.J. Lichtenwalner, J.S. Jur, and A.I. Kingon, Appl. Phys. Lett. 92 (2008).

DOI: 10.1063/1.2890056

Google Scholar

[2] D.J. Lichtenwalner, Lanthanide-based high-K gate dielectric materials, in: S. Kar (Ed. ), High-permittivity Gate Dielectric Materials, Springer-Verlag, Berlin - Heidelberg, 2013, pp.343-369.

DOI: 10.1007/978-3-642-36535-5_9

Google Scholar

[3] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, J.W. Palmour, IEEE Electron Dev. Lett. 22 (2001) 176-178.

DOI: 10.1109/55.915604

Google Scholar

[4] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electron Dev. Lett. 31 (2010) 710-712.

DOI: 10.1109/led.2010.2047239

Google Scholar

[5] D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, J.W. Palmour, Appl. Phys. Lett. 105(18), (2014) 182107.

Google Scholar

[6] D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, S. Allen, and J.W. Palmour, Mat. Sci. Forum Vols. 821-823 (2015) 749-752.

DOI: 10.4028/www.scientific.net/msf.821-823.749

Google Scholar

[7] A. Modic, G. Liu, A.C. Ahyi, Y.M. Zhou, P.Y. Xu, M.C. Hamilton, J.R. Williams, L.C. Feldman, and S. Dhar, IEEE Electron Device Lett. 35(9) (2014) 894–896.

DOI: 10.1109/led.2014.2336592

Google Scholar

[8] G. Liu, B.R. Tuttle, and S. Dhar, Appl. Phys. Rev. 2 (2015) 021307.

Google Scholar

[9] X. Yang, B. -M. Lee, and V. Misra, IEEE Electron Dev. Lett. 36(4) (2015) 312-314.

Google Scholar

[10] D.J. Lichtenwalner, J.M. Hydrick, V. Vankova, V. Misra, J. -P. Maria, and A.I. Kingon, Electrochemical Society (ECS) Trans. 3 (2006) 449-460.

DOI: 10.1149/1.2355734

Google Scholar

[11] F.A. Stevie and R.G. Wilson, J. Vac. Sci. Technol. A9 (1991) 3064.

Google Scholar

[12] P. Soukiassian, T.M. Gentle, M.H. Bakshi and Z. Hurych, J. Appl. Phys. 60 (1986) 4339-4341.

Google Scholar

[13] F. Allerstam, H.Ö. Ólafsson, G. Gudjónsson, D. Dochev, E.Ö. Sveinbjörnsson, T. Rödle and R. Jos, J. Appl. Phys. 101 (2007) 124502.

DOI: 10.4028/www.scientific.net/msf.556-557.487

Google Scholar

[14] E. M. Oellig, E.G. Michel, M.C. Asencio, and R. Miranda, Appl. Phys. Lett. 50 (1987) 1660.

Google Scholar

[15] M. K. Das, B.A. Hull, S. Krishnaswami, F. Husna, S. Haney, A. Lelis, C.J. Scozzie, and J.D. Scofield, Mat. Sci. Forum 527-529 (2006) 967-970.

DOI: 10.4028/www.scientific.net/msf.527-529.967

Google Scholar

[16] B.E. Deal and A.S. Grove, J. Appl. Phys. 36 (1965) 3770.

Google Scholar

[17] W.C. Fan and A. Ignatiev, Phys. Rev. B, 44 (1991) 3110-3114.

Google Scholar

[18] P.D. Kirsch and J.G. Ekerdt, J. Vac. Sci. Technol. A19 (2001) 207-214.

Google Scholar