Energy Consumption in Batch-Mode Capacitive Deionization

Article Preview

Abstract:

Capacitive deionization (CDI) is a water desalination technique in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a small voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. Therefore, one of the advanced merits of CDI is the low driven energy by compared to other desalination technologies. Inspired this, we have performed the calculation on energy consumption of activated carbon based CDI in different operation conditions. The results show that the energy consumptions are significantly related to cell voltage as well as solution concentration. Furthermore, the round trip efficiency as a vital indication in terms of energy consumption have been introduced and discussed as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] Y.A.C. Jande, W.S. Kim, Modeling the capacitive deionization batch mode operation for desalination, J. Ind. Eng. Chem. 20 (2014) 3356-3360.

DOI: 10.1016/j.jiec.2013.12.020

Google Scholar

[2] R. Valladares Linares, Z. Li, S. Sarp, Sz.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse, Water Res. 66 (2014) 122-139.

DOI: 10.1016/j.watres.2014.08.021

Google Scholar

[3] S. Sobana, R.C. Panda, Modeling and control of reverse osmosis desalination process using centralized and decentralized techniques, Desalination 344 (2014) 243-251.

DOI: 10.1016/j.desal.2014.03.014

Google Scholar

[4] T. Kim, J. Yoon, Relationship between capacitance of activated carbon composite electrodes measured at a low electrolyte concentration and their desalination performance in capacitive deionization, J. Electroanal. Chem. 704 (2013) 169-174.

DOI: 10.1016/j.jelechem.2013.07.003

Google Scholar

[5] M.T. Khan, P.Y. Hong, N. Nada, J.P. Croue, Does chlorination of seawater reverse osmosis membranes control biofouling? Water Res. 78 (2015) 84-97.

DOI: 10.1016/j.watres.2015.03.029

Google Scholar

[6] C.H. Hou, C.Y. Huang, C.Y. Hu, Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions, Int. J. Environ. Sci. Technol. 10 (2013) 753–760.

DOI: 10.1007/s13762-013-0232-1

Google Scholar

[7] T. Vercellino, P. Tran, T. Reid, A. Hamood, A. Morse, Evaluation of polymerized organo-selenium feed spacers to inhibit S. aureus and E. coli biofilm development in reverse osmosis systems, Desalination 331(2013) 1-5.

DOI: 10.1016/j.desal.2013.10.007

Google Scholar

[8] L. Liu, L.H. Liao, Q.H. Meng, B. Cao, High performance graphene composite microsphere electrodes for capacitive deionization, Carbon 90 (2015) 75-84.

DOI: 10.1016/j.carbon.2015.04.009

Google Scholar

[9] P. Długołęcki, A. van der Wal, Energy Recovery in membrane capacitive deionization, Environ. Sci. Technol. 47 (2013) 4904-4910.

DOI: 10.1021/es3053202

Google Scholar

[10] H.B. Li, Y. Gao, L.K. Pan, Y.P. Zhang, Y.W. Chen, Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res. 42 (2008) 4923-4928.

DOI: 10.1016/j.watres.2008.09.026

Google Scholar

[11] A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: A critical review, Water Res. 75 (2015) 164-187.

DOI: 10.1016/j.watres.2015.02.032

Google Scholar

[12] H.B. Li, L.K. Pan, T. Lu, Y.K. Zhan, C.Y. Nie, Z. Sun, A comparative study on electrosorptive behavior of carbon nanotube and graphene for capacitive deionization, J. Electroanal. Chem. 653 (2011) 40-44.

DOI: 10.1016/j.jelechem.2011.01.012

Google Scholar

[13] C.Y. Nie, L.K. Pan, H.B. Li, T.Q. Chen, T. Lu, Z. Sun, Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization, J. Electroanal. Chem. 666 (2012) 85-88.

DOI: 10.1016/j.jelechem.2011.12.006

Google Scholar

[14] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water, desalination by capacitive deionization, Prog. Mater. Sci. 58 (2013) 1388-1442.

DOI: 10.1016/j.pmatsci.2013.03.005

Google Scholar

[15] K. Sharm, Y.H. Kim, J. Gabitto, R.T. Mayes, S. Yiacoumi, H.Z. Bilheux, L.M.H. Walker, S. Dai, C. Tsouris, Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions, Langmuir 31 (2015) 1038-1047.

DOI: 10.1021/la5043102

Google Scholar

[16] M. Andelman, Flow through capacitor basics, Sep. Puri. Technol. 80 (2011) 262-269.

Google Scholar

[17] E.G. Quismondo, C. Santos, J. Lado, J. Palma, M.A. Anderson, Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions, Environ. Sci. Technol. 47 (2013) 11866-11872.

DOI: 10.1021/es4021603

Google Scholar

[18] H.B. Li, L.D. Zou, L.K. Pan, Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol. 44 (2010) 8692-8697.

DOI: 10.1021/es101888j

Google Scholar

[19] Z. Li, B. Song, Z.K. Wu, Z.Y. Lin, Y.G. Yao, K.S. Moon, C.P. Wong, 3D porous graphene with ultrahigh surface area for microscale capacitive deionization, Nano Energy 11 (2015) 711-718.

DOI: 10.1016/j.nanoen.2014.11.018

Google Scholar

[20] P. M. Biesheuvel, Thermodynamic cycle analysis for capacitive deionization, J. Colloid Interface Sci. 332 (2009) 258-264.

DOI: 10.1016/j.jcis.2008.12.018

Google Scholar