Harder and Denser AlN-TiB2 Ceramic Composites Processed by Spark Plasma Sintering

Article Preview

Abstract:

Aluminum nitride, AlN, and titanium diborite,TiB2, are covalent-based ceramics with wide technological applications. However, sintering of these ceramics using conventional methods of high pressure requires not only elevated temperatures but also long processing time. This causes excessive grain growth, which impairs strength and hardness. In the present work, 70%AlN-30%TiB2 ceramic composites were sintered to relatively higher density and hardness by means of the Spark Plasma Sintering (SPS) at temperatures in the interval from 1500 to 1900°C in order to improve the properties of both compounds and decrease the processing time. The SPS was applied for different sintering temperatures and the effects on density, hardness and surface structure were evaluated. Maximum values obtained for density and hardness were 98.8% of the theoretical value and 13.7 GPa, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-57

Citation:

Online since:

August 2016

Export:

Price:

[1] K. Katahira, H. Ohmori, Y. Uehara and M. Azuma: Int. J. Machie Tools & Manufact. Vol. 45 (2005), p.891.

Google Scholar

[2] V. Onbattuvelli and S. Atre: Mater. Manufact. Proc. Vol. 26 (2011), p.832.

Google Scholar

[3] A.M. Imtiaz, F.H. Khan and J.S. Walling: IEE Trans. Power Electron. Vol. 30 (2015), p.4437.

Google Scholar

[4] M.A. Fraga, H. Furlan, R.S. Pessoa and M. Massi: Microsystem Technol. -Micro- and Nanosystem – Info Storage Process System Vol. 20 (2014), p.9.

Google Scholar

[5] M. Gillinger, M. Scheider, A. Bittner, P. Nicolay and V. Schmid: J. Appl. Phys. Vol. 117 (2015), p.065303.

Google Scholar

[6] Y.W. Wu, W.F. Zheng, L.M. Lin, Y. Qu and F.C. Lai: Solar Energy Mater and Solar Cells Vol. 115 (2013), p.145.

Google Scholar

[7] Y.J. Heo, H.T. Kim, K.J. Kim, S. Nahm, Y.J. Yoon, and J. Kim: Appl. Thermal Eng. Vol. 50 (2013), p.799.

Google Scholar

[8] W.H. Tuan and S.K. Lee: J. European Ceram. Soc. Vol. 34 (2014), p.4117.

Google Scholar

[9] B.A. Kumar and N. Murugan: Materials & Design Vol. 57 (2014), p.383.

Google Scholar

[10] L. Yuan, B. Liu, N. Shen, T. hai and D. Yang: J. Alloys and Compounds Vol. 593 (2014), p.34.

Google Scholar

[11] A.C. Silva, L. Nakamura and F. Rizzo: J. Minning and Metall. B Vol. 48 (2012), p.471.

Google Scholar

[12] A. Kai, Y. Kamita and T. Miki: J. American Ceram. Soc. Vol. 95 (2012), p.3788.

Google Scholar

[13] C. Subramanian, T.S.R.C. Murthy and A.K. Suri: Intl. J. Refract. Met. Hard Mater. Vol. 24 (2007), p.345.

Google Scholar

[14] B. Basu, G.B. Raju, and A.K. Suri: Intl. Mater. Reviews Vol. 51(2006), p.352.

Google Scholar

[15] M. Struga, L.Y. Chen, H. Choi, X.C. Li and S. Jin: ACS Appl. Mater. & Interfaces Vol. 5 (2013), p.8813.

Google Scholar

[16] S. Suresh and N.S.V. Moorthi: Intern. Conf. Modelling Optim. and Computing Vol. 38 (2012), p.89.

Google Scholar

[17] L.M. Cha, S. Lartigue-Korinek, M. Walls and L. Mazerolles: Acta Materialia Vol. 60 (2012), p.6382.

DOI: 10.1016/j.actamat.2012.08.017

Google Scholar

[18] N. Frage, M.P. Dariel, S. Kalabukhov and E. Zaretsky: Intl. J. Impact Eng. Vol. 77 (2015), p.59.

Google Scholar

[19] X.Y. Zhang, S.H. Tan and D.L. Jiang: Ceramics Intl. Vol. 31 (2005), p.267.

Google Scholar

[20] Z.A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci. Vol. 41 (2006), p.763.

Google Scholar

[21] American Society for Testing and Materials, ASTM, Standard test method for microindentation hardness of materials, E-384-05a, USA, (2005).

Google Scholar

[22] R.G. Munro: J. Research Natl Inst. of Standards and Technol. Vol. 105 (2000), p.709.

Google Scholar