Biological Resistance of Cement Composites Filled with Limestone Powders

Article Preview

Abstract:

In this paper, we consider a method of increasing biological resistance and biological durability of buildings and constructions that are subject to destruction from the impact of microorganisms activity. This article presents the results of studies of innovative materials in the field of bioresistant building materials. Powders of milled quartz sand and limestone were the fillers for the composites. Limestone used for the experiments is from the Chechnya depostits. We have implemented optimization for the cement composites compositions using the methods of mathematical experiment design. We derived the dependences describing how the bioresistance coefficient, the elastic modulus and the water demand depend on the granulometric composition after 3 and 9 months of aging in the environment of filamentous fungi. We have found that the multifractional compositions have a higher bioresistance coefficient. We determined the fungal resist compositions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-27

Citation:

Online since:

September 2016

Export:

Price:

* - Corresponding Author

[1] Y.V. Puharenko, Y.M. Bazhenov, V.T. Erofeev, Zhelezobetonnye izdelija i konstrukcii: Nauchno-tehnicheskij spravochnik, NPO Professional, Sankt-Peterburg, (2013).

Google Scholar

[2] T. Deuse, D. Hornung, M. Mollman, From Mikrodur to Nanodur technology – Standard cement for practice-oriented manufacture of UHPC, Concrete Plant and Precast Technology. 75 (5) (2009) 4-15.

Google Scholar

[3] V.I. Kalashnikov, Terminologija nauki o betonah novogo pokolenija, Stroitel'nye materialy. 10 (2011) 103-106.

Google Scholar

[4] V.I. Kalashnikov V.T. Erofeev, M.N. Frost, I.Y. Troyanov, V.M. Volodin, O.V. Suzdaltsev, Nanogidrosilikatnye tekhnologii v proizvodstve betonov, Stroitel'nye materialy. 5 (2014) 88-91.

Google Scholar

[5] D.V. Emelyanov, V.T. Erofeev, E.M. Balathanova, S.V. Markov, A.I. Golubka, Issledovanie tsementnyh kompozitov s dobavkoy tonkodispersnyh chastits rechnogo izvestnyaka, Estestvennye i tehnicheskie nauki. 9-10 (77) (2014) 423-425.

Google Scholar

[6] D.V. Emelyanov, V.T. Erofeev, E.M. Balathanova, S.V. Markov, A.V. Senyutin, Issledovanie tsementnyh kompozitov s dobavkoy gornogo izvestnyaka, Estestvennye i tehnicheskie nauki. 9-10 (77) (2014) 426-428.

Google Scholar

[7] V.T. Erofeev, Y.M. Bazhenov, E.M. Balathanova, E.A. Mitina, D.V. Emelyanov, A.I. Rodin, S.N. Karpushin, Poluchenie i fiziko-mekhanicheskie svoystva tsementnyh kompozitov s primeneniem napolniteley i vody zatvoreniya mestorozhdeniy Chechenskoy Respubliki, Vestnik MGSU. 12 (2014).

Google Scholar

[8] V.I. Kalashnikov, Super- i giperplastifikatory. Mikrokremnezemy. Betony novogo pokolenija s nizkim udel'nym rashodom cementa na edinicu prochnosti, ALITinform: Cement. Beton. Suhie smesi. 4 (2011) 60-69.

Google Scholar

[9] I. Piers, H. Barbara, B. Barragan, G. Ramos, Samouplotnjajushhejsja beton s melkoizmel'chennym karbonatom kal'cija, CPI. Mezhdunarodnoe betonnoe proizvodstvo. 1 (2012) 34-38.

Google Scholar

[10] V.T. Erofeev, E.N. Suraeva, A.D. Bogatov, S.V. Kaznacheev, V.F. Smirnov, A.I. Rodin, Suhie stroitelnye smesi, modificirovannye biocidnoy dobavkoy, International Journal for Computational Civil and Structural Engineering. 3 (2012) 93-100.

Google Scholar

[11] V.T. Erofeev, V.F. Smirnov, E.A. Morozov, Mikrobiologicheskoe razrushenie materialov: uchebnoe posobie dlja vuzov po napravleniju 270100 Stroitelstvo, ASV, Moskva, (2008).

Google Scholar

[12] H.A. Videla, L.K. Herrera, Microbiologically Influenced Corrosion: Looking to the Future, International Microbiology. (2005) 169-180.

Google Scholar

[13] R. Javaherdashti, Microbiologically Influenced Corrosion an Engineering Insight, Springer-Verlag, London, (2008).

Google Scholar

[14] B.J. Little, J.S. Lee, Microbiologically Influenced Corrosion, John Wiley & Sons, Inc., Hoboken, (2007).

Google Scholar

[15] B. Ramesh Babu, S. Maruthamuthu, A. Rajasekar, N. Muthukumar, N. Palaniswamy, Microbiologically Influenced Corrosion in Dairy Effluent, International Journal of Environmental Science & Technology. 2 (2006) 159-166.

DOI: 10.1007/bf03325920

Google Scholar

[16] W. Sand, T. Dumas, S. Marcclargent, (11992) ASTM International Symposium on Microbiologically Influenced Corrosion (M.I.C. ) Testing, Test for Biogenic Sulfuric Acid Corrosion in a Simulated Chamber Confirm the On Site Performance of a Calcium Aluminate Based Concrete in Sewage Applications.

DOI: 10.1520/stp12938s

Google Scholar

[17] B.V. Gusev, V.T. Erofeev, V.F. Smirnov, A.V. Dergounova, A.D. Bogatov, Razrabotka sposobov povysheniya biostoykosti stroitel'nyh materialov, Promyshlennoe i grazhdanskoe stroitel'stvo. 4 (2012) 52-58.

Google Scholar

[18] V.T. Erofeev, V.A. Smirnov, D.A. Svetlov, S. V, Kaznacheev, V.A. Spirin, A.V. Dergounova, A.D. Bogatov, E.M. Balathanova, A.I. Rodin, Optimizacija sostavov cementnyh kompozitov s fungicidnymi dobavkami na osnove guanidine, Privolzhskij nauchnyj zhurnal. 2 (2014).

Google Scholar

[19] S.A. Startcev, D.M. Shlychkova, O.A. Petrochenko, J.A. Ibraeva, Interaction Concrete with Acidic Fluids, Advanced Materials Research. 941-944 (2014) 1380-1385.

DOI: 10.4028/www.scientific.net/amr.941-944.1380

Google Scholar

[20] V.I. Kalashnikov, Shto takoe poroshkovo-aktivirovannyy beton novogo pokoleniya, Stroitel'nye materialy. 10 (2012) 70-71.

Google Scholar

[21] V.I. Kalashnikov, O.V. Tarakanov, I.V. Erofeeva, Izuchenie reologicheskoj aktivnosti izvestnjakovoj muki dlja poluchenija jeffektivnyh betonov, Materiali za 11-a mezhdunarodna nauchna praktichna konferencija «Najnovite postizhenija na evropejskata nauka», «Bjal GRAD-BG» OOD. 13 (2015).

Google Scholar