Physical and Mechanical Properties of the Cement Stone Based on Biocidal Portland Cement with Active Mineral Additive

Article Preview

Abstract:

The article considers innovative materials for construction. Using mathematical planning methods, we studied how the quantitative composition, the biocidal additive and gypsum content influence on the compressive and flexural strength and density of the composites. We found that the more gypsum in a composition the higher compressive and flexural strength of a specimen. So, with the greatest degree of compositions filling (fly ash – 20 mass fractions, gypsum – 11.2 mass fractions) maximum compressive strength is 72.5 MPa. We determined when the fly ash content rises up to 20 mass fractions per 100 mass fractions of clinker, flexural strength rises too and specimen density decreases. The developed compositions of biocidal cements recommended for use in the manufacture of materials, products and structures for buildings and constructions, operating in aggressive environments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-32

Citation:

Online since:

September 2016

Export:

Price:

* - Corresponding Author

[1] B. Gusev, V. Erofeev, V. Smirnov, A. Dergounova, A. Bogatov. Razrabotka sposobov povysheniya biostoykosti stroitel'nyh materialov, Promyshlennoye i grazhdanskoye stroitel'stvo. 4 (2012) 52-58.

Google Scholar

[2] V. Erofeev, S. Kaznacheev, A. Bogatov, V. Spirin, D. Svetlov. Biotsidnye tsementnye kompozity s dobavkami, soderzhashhimi guanidine, Privolzhskiy nauchnyy zhurnal. 4 (2010) 87-94.

Google Scholar

[3] V. Erofeev, P. Komokhov, V. Smirnov, D. Svetlov, S. Kaznacheev, A. Bogatov, E. Morozov, O. Vasiliev, Y. Makarevich, V. Spirin, N. Patsyuk. Zashhita zdanij i sooruzhenij ot mikrobiologicheskih povrezhdenij biocidnymi preparatami na osnove guanidine, Nauka, St. Petersburg, (2009).

Google Scholar

[4] V. Erofeev, A. Rodin, A. Bogatov, S. Kaznacheev, V. Smirnov, D. Svetlov. Fiziko-mehanicheskie svojstva i biostojkost cementov, modificirovannyh sernokislym natriem, ftoristym natriem i poligeksametilenguanidin stearatom, Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskiye nauki. 7-2 (2013).

Google Scholar

[5] V. Erofeev. Zashhita zdaniy i sooruzheniy ot mikrobiologicheskih povrezhdeniy biotsidnymi preparatami na osnove guanidina, Nauka, St. Petersburg, (2010).

Google Scholar

[6] V. Erofeev, A. Bogatov, S. Bogatova, V. Smirnov, Е. Zaharova. Issledovanie biostojkosti stroitelnyh materialov s uchetom ih starenija, Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Serija: Stroitel'stvo i arhitektura. 22 (2011).

Google Scholar

[7] V. Erofeev, A. Bogatov, S. Bogatova, S. Kaznacheev, V. Smirnov, E. Zakharova. Issledovanie biostojkosti stroitelnyh materialov s uchetom ih starenija, Internet-Vestnik VolgGASU. 2 (22) (2012) 3.

Google Scholar

[8] V. Erofeev, A. Bogatov, V. Smirnov, S. Bogatova, S. Kaznacheev, A. Rodin. Biostojkie stroitelnye kompozity na osnove othodov stekla, Leonardo da Vinchi Mezhdunarodnaya nauchno-prakticheskaya konferentsiya. (2013) 83-97.

Google Scholar

[9] V. Erofeev, A. Dergounova. Ekonomicheskaya ehffektivnost povysheniya dolgovechnosti stroitelnyh konstruktsiy, Stroitel'nyye materialy. 2 (2008) 88-89.

Google Scholar

[10] V. Erofeev, A. Rodin, A. Bogatov, S. Kaznacheev, V. Smirnov, E. Suraeva, M. Rodina. Biotsidnyy portlandtsement s uluchshennymi fiziko-mekhanicheskimi svoystvami, International Journal for Computational Civil and Structural Engineering. 8, 3 (2012).

Google Scholar

[11] V. Erofeev, A. Bogatov, V. Smirnov, S. Bogatova, S. Kaznacheev, A. Rodin. Biostojkie stroitelnye kompozity na osnove othodov stekla, Vestnik VolgGASU. 16 (2009) 122–126.

Google Scholar

[12] V. Erofeev, E. Suraeva, A. Bogatov, S. Kaznacheev, V. Smirnov, A. Rodin. Suhie stroitelnye smesi, modificirovannye biocidnoy dobavkoy, International Journal for Computational Civil and Structural Engineering. 3 (2012) 93-100.

Google Scholar

[13] E. Zavalishin, V. Erofeev, V. Smirnov, E. Morozov. Biologicheskoe soprotivlenie kompozitov na osnove zhidkogo stekla, biopovrezhdenija i biokorrozija v stroitelstve Mezhdunarodnaya nauchno- tekhnicheskaya konferentsiya. (2004) 156-159.

Google Scholar

[14] B. Sagmeister, T. Deuse. The use of advanced concrete on the basis of specific binding in the construction and engineering industries, International Concrete Production. 2 (2012) 26-32.

Google Scholar

[15] V. Kalashnikov V. Erofeev, M. Frost, I. Troyanov, V. Volodin, O. Suzdaltsev. Nanogidrosilikatnye tekhnologii v proizvodstve betonov, Stroitel'nyye materialy. 5 (2014) 88-91.

Google Scholar

[16] A. Rodin. Razrabotka biotsidnyh tsementov i kompozitov na ih osnove, Author's abstract of scientific paper, Saransk, (2013).

Google Scholar

[17] D. Svetlov, V. Spirin, S. Kazanacheev, A. Bogatov, A. Boriskin, V. Erofeev. Fiziko-tehnicheskie svojstva cementnyh kompozitov s biocidnoj dobavkoj, Transportnoye stroitel'stvo. 2 (2008) 21-23.

Google Scholar

[18] V. Solomatov, V. Erofeev, M. Feldman. Biologicheskoe soprotivlenie betona Izvestija vysshih uchebnyh zavedenij. 8 (1996) 44.

Google Scholar

[19] O. Hornung, M. Moelman. Moving from Microdur technology to Nanodur technology. Use of standard cement in practice of the production of cement concrete with ultra-high performance properties, Concrete plant. 3 (2009) 4-10.

Google Scholar

[20] W. Schultz, J. Strunge. Spezialzemente fuer Hochleistungsbetone, BWI International. 1 (2007) 28-35.

Google Scholar