Advanced Intermetallic TiAl Alloys

Article Preview

Abstract:

Challenging issues concerning energy efficiency and environmental politics require novel approaches to materials design. A recent example with regard to structural materials is the emergence of lightweight intermetallic TiAl alloys. Their excellent high-temperature mechanical properties, low density, and high stiffness constitute a profile perfectly suitable for their application as advanced aero-engine turbine blades or as turbocharger turbine wheels in next-generation automotive engines. Advanced so-called 3rd generation TiAl alloys, such as the TNM alloy described in this paper, are complex multi-phase alloys which can be processed by ingot or powder metallurgy as well as precision casting methods. Each process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and/or subsequent heat treatments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] Y-W. Kim, D. Morris, R. Yang, and C. Leyens (Eds. ), Structural Aluminides for Elevated Temperature Applications, The Minerals, Metals and Materials Society (TMS), Warrendale, PA, USA, (2008).

Google Scholar

[2] H. Clemens, S. Mayer, Development Status, Applications and perspectives of advanced intermetallic titanium aluminides, Materials Science Forum Vols. 783-786 (2014) 15-20.

DOI: 10.4028/www.scientific.net/msf.783-786.15

Google Scholar

[3] F. Appel, J. D. H. Paul, M. Oehring, Gamma Titanium Aluminide Alloys - Science and Technology, WILEY- VCH, Weinheim, (2011).

DOI: 10.1002/9783527636204

Google Scholar

[4] H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys, Adv. Eng. Mat., 15 (2013) 191-215.

DOI: 10.1002/adem.201200231

Google Scholar

[5] H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, and A. Bartels, Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability, Adv. Eng. Mat. 10 (2008) 707-713.

DOI: 10.1002/adem.200800164

Google Scholar

[6] W. Wallgram, T. Schmoelzer, G. Das, V. Güther, and H. Clemens, Technology and mechanical properties of advanced g-TiAl based alloys, Int. J. Mat. Res. 100 (2009) 1021-1030.

DOI: 10.3139/146.110154

Google Scholar

[7] E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly, and V. Güther, Microstructural design and mechanical properties of a cast and heat-treated intermetallic multiphase γ-TiAl based alloy, Intermetallics 44 (2014) 128-140.

DOI: 10.1016/j.intermet.2013.09.010

Google Scholar

[8] E. Schwaighofer, B. Rashkova, H. Clemens, A. Stark, and S. Mayer, Effect of carbon additions on solidifaction behavior, phase evolution and creep properties of an intermetallic b-stabilized TiAl based alloy, Intermetallics 46 (2014) 173-184.

DOI: 10.1016/j.intermet.2013.11.011

Google Scholar

[9] M. Schloffer, B. Rashkova, T. Schöberl, E. Schwaighofer, Z. Zhang, H. Clemens, S. Mayer, Evolution of wo-phase in a b-stabilized multi-phase TiAl alloy and its effect on hardness, Acta Mater. 64 (2014) 241-252.

DOI: 10.1016/j.actamat.2013.10.036

Google Scholar

[10] H. Clemens, W. Smarsly, V. Güther, S. Mayer, Advanced intermetallic titanium aluminides, DOI: 10. 1002/9781119296126; Wiley, USA, 2016, 1189-1200.

DOI: 10.1002/9781119296126.ch203

Google Scholar

[11] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics 19 (2011) 776-781.

DOI: 10.1016/j.intermet.2010.11.017

Google Scholar

[12] N. Rizzi, Structural Aluminides for Elevated Temperature Applications, TMS 2008 Annual Meeting, New Orleans, LA, USA (March 9-13, 2008).

Google Scholar

[13] T. Tetsui, Application of TiAl in a turbocharger for passenger vehicles, Adv. Eng. Mat. 3 (2001) 307-310.

DOI: 10.1002/1527-2648(200105)3:5<307::aid-adem307>3.0.co;2-3

Google Scholar

[14] W. Smarsly, H. Baur, H. Clemens, T. Khan, and M. Thomas, Titanium aluminides for automotive and gas turbine application, in: K. Hemker et al. (Eds), Structural Intermetallics 2001, TMS, Warrendale, PA, USA, 2001, pp.25-34.

Google Scholar

[15] B. B. Bewlay, S. Nag, A. Suzuki, M. J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp., 33 (2016) 549-559.

DOI: 10.1080/09603409.2016.1183068

Google Scholar

[16] J. Aguilar, A. Schievenbusch and O. Kättlitz, Investment casting technology for production of TiAl low pressure turbine blades - process engineering and parameter analysis, Intermetallics 19 (2011) 757-761.

DOI: 10.1016/j.intermet.2010.11.014

Google Scholar

[17] D. Hautmann, Titanium aluminide – a class all by itself, MTU Aero Engines Report 1 (2013) 24-29.

Google Scholar