Analysis of 4H-SiC MOS Capacitors on Macro-Stepped Surfaces

Article Preview

Abstract:

In this study, we compare the electrical properties of MOS capacitors fabricated on different surface morphologies. Comparing a standard, low-roughness (<1nm), surface with one with a roughness of ~40nm, characterized by big macrosteps and large terraces. We compared the two surfaces for different thermal oxide thicknesses, ranging from dOx = 3.6 nm to dOx = 32 nm. The extracted interface state traps (Dit) shows a small, but systematic, decrease of ~10-15 % for the samples with macrosteps.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-110

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] Sun, B. and P.D. James., Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces. IEEE Transactions on Electron Devices, 1980. ED-27(8): p.1497.

DOI: 10.1109/t-ed.1980.20063

Google Scholar

[2] Camarda, M., et al., Effects of the Growth Rate on the Quality of 4H Silicon Carbide Films for MOSFET Applications. Materials Science Forum, 2014. 778-780: pp.95-98.

DOI: 10.4028/www.scientific.net/msf.778-780.95

Google Scholar

[3] Kin Kiong LEE, T.O., Akihiko OHI, Hisayoshi ITOH and Gerhard PENSL, Anomalous Increase in Effective Channel Mobility on Gamma-Irradiated p-Channel SiC Metal–Oxide–Semiconductor Field-Effect Transistors Containing Step Bunching. Japanese Journal of Applied Physics, 2006. 45: p.6.

DOI: 10.1143/jjap.45.6830

Google Scholar

[4] Haney, S. and A. Agarwal, The Effects of Implant Activation Anneal on the Effective Inversion Layer Mobility of 4H-SiC MOSFETs. Journal of Electronic Materials, 2007. 37(5): pp.666-671.

DOI: 10.1007/s11664-007-0310-6

Google Scholar

[5] Liu, L., et al., The Influence of SiC/SiO_2 Interface morphology on the electrical characteristics of SiC MOS structures. IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), (2014).

DOI: 10.1109/wipda.2014.6964633

Google Scholar

[6] Naik, H., K. Tang, and T.P. Chow, Effect of Graphite Cap for Implant Activation on Inversion Channel Mobility in 4H-SiC MOSFETs. Materials Science Forum, 2009. 615-617: pp.773-776.

DOI: 10.4028/www.scientific.net/msf.615-617.773

Google Scholar

[7] Frazzetto, A., et al., Limiting mechanism of inversion channel mobility in Al-implanted lateral 4H-SiC metal-oxide semiconductor field-effect transistors. Applied Physics Letters, 2011. 99(7): p.072117.

DOI: 10.1063/1.3665121

Google Scholar

[8] Masuda, T., et al., High Channel Mobility of 4H-SiC MOSFET Fabricated on Macro-Stepped Surface. Materials Science Forum, 2009. 600-603: pp.695-698.

DOI: 10.4028/www.scientific.net/msf.600-603.695

Google Scholar

[9] Soulière, V., et al., 4H-SiC(0001) surface faceting during interaction with liquid Si. Material Science Forum, (2016).

DOI: 10.4028/www.scientific.net/msf.858.163

Google Scholar

[10] Brews, J.R., Rapid interface parameterization using a single MOS conductance curve. Solid State Electronics, 1983. 26(8).

DOI: 10.1016/0038-1101(83)90030-8

Google Scholar

[11] Woerle, J., et al., Analysis of thin thermal oxides on (0001) SiC epitaxial layers. Material Science Forum, accepted, (2016).

Google Scholar