Al+ Ion Implanted 4H-SiC Vertical p+-i-n Diodes: Processing Dependence of Leakage Currents and OCVD Carrier Lifetimes

Article Preview

Abstract:

The reverse and forward currents of Al+ ion implanted 4H-SiC p+-i-n diodes have been compared for identically processed devices except for the implanted Al concentration in the emitter, 6×1019 cm-3 against 2×1020 cm-3, and the post implantation annealing treatment, 1600°C/30 min and 1650°C/25 min against 1950°C/5min. The diodes’ ambipolar carrier lifetime, as obtained by open circuit voltage decay measurements, has been compared too. The devices with lower annealing temperature show lower leakage currents and higher ambipolar carrier lifetime; they also show lower current in ohmic conduction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-442

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] R. Nipoti, R. Scaburri, A. Hallén and A. Parisini, Conventional thermal annealing for a more efficient p-type doping of Al + implanted 4H-SiC, J. Mater. Res. 28(1) (2013) 17-22.

DOI: 10.1557/jmr.2012.207

Google Scholar

[2] P. Fedeli, M. Gorni, A. Carnera, A. Parisini, G. Alfieri, et al., 1950°C post implantation annealing of Al+ implanted 4H-SiC: relevance of the annealing time, ECS J. Solid State Sci. Technol. 5(9) (2016) P534-P539.

DOI: 10.1149/2.0361609jss

Google Scholar

[3] R. Nipoti, A. Parisini, G. Sozzi, M. Puzzanghera, A. Parisini, and A. Carnera, Structural and functional characterizations of Al+ implanted 4H-SiC Layers and Al+ implanted 4H-SiC p-n Junctions after 1950°C Post Implantation Annealing, ECS J. Solid State Sci. Tech., 5 (10) (2016).

DOI: 10.1149/2.0211610jss

Google Scholar

[4] H. M. Ayedh, V. Bobal, R. Nipoti, A. Hallén and B. G. Svensson, Formation of carbon vacancies in 4H silicon carbide during high temperature processing, J. Appl. Phys. 115 (2014) 012005.

DOI: 10.1063/1.4837996

Google Scholar

[5] H. M. Ayedh, A. Hallén, and B. G. Svensson, Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species, J. Appl. Phys. 118 (2015) 175701.

DOI: 10.1063/1.4934947

Google Scholar

[6] H. M. Ayedh, M. Puzzanghera, B. G. Svensson and R. Nipoti, DLTS study on Al+ ion implanted and 1950°C annealed p-i-n 4H-SiC vertical diodes, ECSCR2016, TuP. 02.

DOI: 10.4028/www.scientific.net/msf.897.279

Google Scholar

[7] U. Grossner, F. Moscatelli and R. Nipoti, Al+ Implanted 4H-SiC p+-i-n Diodes: Evidence for Post-Implantation-Annealing Dependent Defect Activation, Mater. Sci. Forum 778-780 (2014) 657-660.

DOI: 10.4028/www.scientific.net/msf.778-780.657

Google Scholar

[8] R. Nipoti, F. Bergamini, F. Moscatelli, et al., Current analysis of ion implanted and not terminated p+/n 4H-SiC junctions: post-implantation annealing in Ar ambient, Mater. Sci. Forum 527-529 (2006) 815-818.

DOI: 10.4028/www.scientific.net/msf.527-529.815

Google Scholar

[9] R. Nipoti, F. Moscatelli and P. De Nicola, Al+ implanted 4H-SiC p+-i-n diodes: forward current negative temperature coefficient, IEEE Electron. Dev. Lett. 34(8) (2013) 966-968.

DOI: 10.1109/led.2013.2269863

Google Scholar

[10] P.J. Wilson, Recombination in silicon p−π−n diodes, Solid-State Electr. 10 (1967)145-154.

DOI: 10.1016/0038-1101(67)90032-9

Google Scholar

[11] H. Schlangenotto and W. Gerlach, On the post-injection voltage decay of p-s-n rectifiers at high injection levels, Solid-State Electr. 15 (1972) 393-402.

DOI: 10.1016/0038-1101(72)90110-4

Google Scholar

[12] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Inc., (2007).

Google Scholar

[13] M. Puzzanghera and R. Nipoti, Forward current of Al+ implanted 4H-SiC diodes: a study on the periphery and area components, Mater. Sci. Forum 858 (2016) 773-777.

DOI: 10.4028/www.scientific.net/msf.858.773

Google Scholar