Generation of Latex Films on Glassy Substrates by Evaporation Induced Self-Assembly (EISA) Process

Article Preview

Abstract:

It will be discussed in this work how it is possible to produce latex films by evaporation induced self-assembly (EISA) process. Latex beads were synthesized in a cylindrical flask without N2 flow. The polymerization process of styrene happens at water as solvent and with the presence of persulfate potassium as initiator. The final product was a dispersion of spherical nanometric particles (ɸ = 0.47 ± 0.06μm) whose concentration can be changed from 0.5 to 10% (V/Vo). These dispersions were spread on glassy substrates at 50°C over a square area (~1cm2) with control of solvent evaporation. The films are transparent and they show the formation of nanowire structures by scanning electron microscopy (SEM) characterization. Such structures were associated to high affinity of latex beads particles to form cylindrical arrangements due to presence of O2 during their synthesis. It has been concluded that this self-assembly structure can be very worthy for generation of functional devices like sensors, solar cells and biomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-240

Citation:

Online since:

September 2018

Export:

Price:

* - Corresponding Author

[1] A. Suhendi, A.B.D. Nandiyanto, M.M. Munir, T. Ogi, L. Gradon, K. Okuyama: Langmuir Vol. 29(2013), p.13152.

DOI: 10.1021/la403127e

Google Scholar

[2] C.A. Tao, J.F. Wang, Y. Long, Y.N. Lu, G.T. Li: Advanced Materials Research Vols. 554-556 (2012), p.395.

Google Scholar

[3] X. Wang, S.M. Husson, X. Qian, S.R. Wickramasinghe: J. Membrane Sci. 365 (2010), p.302.

Google Scholar

[4] J. Jenkins, M. Flickinger, O. Velev: Materials Vol. 6 (2013), p.1803.

Google Scholar

[5] R. Balgis, T. Ogi, A.F. Arif, G.M. Anilkumar, T. Mori, K. Okuyama: Carbon Vol. 84 (2015), p.281.

Google Scholar

[6] P. Ihalainen, A. Maattanen, M. Pesonen, P. Sjoberg, J. Sarfraz, R. Osterbacka, J. Peltonen: Appl. Surf. Sci. Vol. 329 (2015), p.321.

Google Scholar

[7] E. Armstrong, C. O'Dwyer: J. Mater. Chem. C Vol. 3 (2015), p.6109.

Google Scholar

[8] Nanomaterials and Nanoarchitectures, in:A Complex Review of Current Hot Topics and their Applications, edited by M. Bardosova and T. Wagner, Springer Netherlands, 2015, p.343.

Google Scholar

[9] E. Sowade, T. Blaudeck, R.R. Baumann: Crystal Growth & Design Vol. 16 (2016), p.1017.

Google Scholar

[10] R.B. Wehrspohn: Applications of silicon-based photonic crystals, in IEEE International Conference on Group IV Photonics 2005, 2nd (2005), p.39.

DOI: 10.1109/group4.2005.1516396

Google Scholar

[11] G. Alombert-Goget, C. Armellini, S. Berneschi, A. Chiasera, F. Cosi, G.N. Conti, P. Féron, M. Ferrari, L. Lunelli, E. Moser, C. Pederzolli, G.C. Righini: Glass-ceramics coating of silica microspheres, ICTON Mediterranean Winter Conference (ICTON-MW), 3rd (2009).

DOI: 10.1109/ictonmw.2009.5385639

Google Scholar

[12] Y. Zhu, Y. Cao, J. Ding, Z. Li, J. Liu, Y. Chi: Appl. Phys. Mater. A Vol. 94(2009), p.731.

Google Scholar

[13] M.U. Khan, J. Justice, A. Boersma, M. Mourad, R. van Ee, A. van Blaaderen, J. Wijnhoven, B. Corbett, Development of photonic crystal structures for on-board optical communication, in Proc. SPIE, 9127(2014), p.912705.

DOI: 10.1117/12.2052214

Google Scholar

[14] B.T. Holland, C.F. Blanford, A. Stein: Science Vol. 281 (1998), p.538.

Google Scholar

[15] B.T. Holland, C.F. Blanford, T. Do, A. Stein: Chem. Mater. Vol. 11 (1999), p.795.

Google Scholar

[16] C.L. Huisman, J. Schoonman, A. Goossens: Sol. Energ. Mat. Sol. C. Vol. 85(2005), p.115.

Google Scholar

[17] C.Y. Chou, C.P. Lee, R. Vittal and K.C. Ho: Journal of Power Sources Vol. 196 (2011), p.6595.

Google Scholar

[18] L. Vaillant, E. Vigil, F. Forcade, T. Thami, H. Adnani, C. Yacou, A. Ayral, P. Saint Grégoire: Eur. Phys. J. Appl. Phys. Vol. 72 (2015), p.20404.

DOI: 10.1051/epjap/2015150221

Google Scholar

[19] D.A. Barros Filho, J.E. Benedetti, M.A. Pereira da Silva, V. Seriacopi, W.R. Gomes Silva, R.C.B. Alonso, H.R. Lewgoy, A. Anido-Anido, R. Amore, C. Anauate Netto, C.O. Avellaneda, C.V. Santilli, A.F. Nogueira: Micropor. Mesopor. Mat. Vol. 152 (2012).

DOI: 10.1016/j.micromeso.2011.11.056

Google Scholar

[20] K.L. Lusker, J.J. Yu, J.C. Garno: Thin Solid Films Vol. 519 (2011), p.5223.

Google Scholar

[21] A.L. Rogach, N.A. Kotov, D.S. Koktysh, J.W. Ostrander, G.A. Ragoisha: Chem. Mater. Vol. 12 (2000), p.2721.

Google Scholar

[22] P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin: Chem. Mater. Vol. 11 (1999), p.2132.

Google Scholar