Preparation of Cr Metal Supported on Sulfated Zirconia Catalyst

Article Preview

Abstract:

Catalyst of Chromium (Cr) metal supported on sulfated zirconia (SZ) was prepared by wet impregnation method. This study aim to determine the optimal concentration of Cr metal that impregnated on SZ catalyst. Preparation of catalyst was conducted at different concentrations of Cr metal (0.5%, 1%, 1.5% (w/w)), impregnated on SZ catalyst, then followed by the calcinationand reduction process. Catalysts were charaterized by FTIR, XRD, XRF, SAA, TEM, and acidity test. The results showed the Cr/SZ 1% had the highest acidity value of 8.22 mmol/g which confirmed from FTIR spectra. All the crystal phase of these catalysts were in monoclinic. The specific surface area increased with the increasing of Cr metal concentration on SZ catalyst and the isotherm adsorption-desorption of N2 gas observed all the catalysts as mesoporous material. The impregnation process formed particles agglomeration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-227

Citation:

Online since:

March 2019

Export:

Price:

* - Corresponding Author

[1] Y. Zhai, H. Zhang, J. Hu, B. Yi, Preparation and characterization of sulfated zirconia (SO42−/ZrO2 )/Nafion composite membranes for PEMFC operation at high temperature / low humidity, J. Memb. Sci. 280 (2006) 148–155.

DOI: 10.1016/j.memsci.2006.01.028

Google Scholar

[2] B. A. Dar, N. Ahmad, J. Patial, P. Sharma, K. Bindu, S. Maity, B. Singh, Sulfated zirconia as an efficient heterogeneous and reusable catalyst for one pot synthesis of flavanones, J. Saudi Chem. Soc. 18 (2014) 464–468.

DOI: 10.1016/j.jscs.2011.09.015

Google Scholar

[3] V. G. Deshmane, Y. G. Adewuyi, Mesoporous nanocrystalline sulfated zirconia synthesis and its application for FFA esterification in oils, Applied Catal. A, Gen. 462–463 (2013) 196–206.

DOI: 10.1016/j.apcata.2013.05.005

Google Scholar

[4] H. L. Coonradt, W. E. Garwood, Mechanism of Hydrocracking. Reactions of Paraffins and Olefins, Ind. Eng. Chem. Process Des. Dev. 3 (1964) 38–45.

DOI: 10.1021/i260009a010

Google Scholar

[5] Hasanudin, M. Said, M. Faizal, M. H. Dahlan, K. Wijaya, "Hydrocracking of oil residue from palm oil mill effluent to biofuel, Sustain. Environ. Res. 22 (2012) 395–400.

Google Scholar

[6] J. E. Tabora, R. J. Davis, Structure of Fe, Mn-Promoted Sulfated Zirconia Catalyst by X-Ray and IR Absorption Spectroscopies, J. Chem. Soc. Faraday Trans. 91 (1995) 1825–1833.

DOI: 10.1039/ft9959101825

Google Scholar

[7] B. M. Reddy, M. K. Patil, Organic Syntheses and Transformations Catalyzed by Sulfated Zirconia, Chem. Rev. 109 (2009) 2185-2208.

DOI: 10.1021/cr900008m

Google Scholar

[8] S. Raissi, N. Kamoun, M. K. Younes, A. Ghorbel, Effect of drying conditions on the textural, structural and catalytic properties of Cr/ZrO2-SO4: N-hexane conversion, React. Kinet. Mech. Catal. 115 (2015) 499–512.

DOI: 10.1007/s11144-015-0853-0

Google Scholar

[9] A. K. Aboul-gheit, F. K. Gad, G. M. Abdel-aleem, D. S. El-desouki, Pt, Re and Pt – Re incorporation in sulfated zirconia as catalysts for n-pentane isomerization, Egypt. J. Pet. 23 (2014) 303–314.

DOI: 10.1016/j.ejpe.2014.08.006

Google Scholar

[10] L. Hauli, K. Wijaya, and R. Armunanto, Preparation and Characterization of Sulfated Zirconia from a Commercial Zirconia Nanopowder,Orient. J. Chem. 34 (2018).

DOI: 10.13005/ojc/340348

Google Scholar

[11] F. Heshmatpour, R. B. Aghakhanpour, Synthesis and characterization of superfine pure tetragonal nanocrystalline sulfated zirconia powder by a non-alkoxide sol – gel route, Adv. Powder Technol. 23 (2012) 80–87.

DOI: 10.1016/j.apt.2010.12.012

Google Scholar

[12] J. R. Sohn, T. D. Kwon, S.-B. Kim, Characterization of zirconium sulfate supported on zirconia and activity for acid catalysis, Bull. Korean Chem. Soc. 22 (2001) 1309–1315.

Google Scholar

[13] F. Babou, G. Coudurier, J. C. Vedrine, Acidic Properties of Sulfated Zirconia: An Infrared Spectroscopic Study, J. Catal. 152 (1995) 341–349.

DOI: 10.1006/jcat.1995.1088

Google Scholar

[14] N. Katada, J. Endo, K. Notsu, N. Yasunobu, N. Naito, Superacidity and Catalytic Activity of Sulfated Zirconia, J. Phys. Chem. 104 (2000) 10321–10328.

DOI: 10.1021/jp002212o

Google Scholar

[15] M. Bi, H. Li, W. Pan, W. G. Lloyd, B. H. Davis, Thermal Studies of Metal Promoted Sulfated Zirconia, (1996) 77–81.

Google Scholar

[16] K. Jiang, D. Tong, J. Tang, R. Song, C. Hu, Applied Catalysis A : General The Co-promotion effect of Mo and Nd on the activity and stability of sulfated zirconia-based solid acids in esterification, Applied Catal. A, Gen. 389 (2010) 46–51.

DOI: 10.1016/j.apcata.2010.08.062

Google Scholar

[17] L. M. Kustov, V. B. Kazansky, F. Figueras, D. Tichit, Investigation Of The Acidic Properties of ZrO2 Modified by SO42- Anions, J. Catal. 150 (1994) 143-149.

DOI: 10.1006/jcat.1994.1330

Google Scholar

[18] M. Utami, K. Wijaya, W. Trisunaryanti, Effect of Sulfuric Acid Treatment and Calcination on Commercial Zirconia Nanopowder, Key Eng. Mater. 757 (2017) 131–137.

DOI: 10.4028/www.scientific.net/kem.757.131

Google Scholar

[19] A. E. A. Said, M. M. A. El-wahab, M. A. El-aal, Journal of Molecular Catalysis A : Chemical The catalytic performance of sulfated zirconia in the dehydration of methanol to dimethyl ether, Journal Mol. Catal. A, Chem. 394 (2014) 40–47.

DOI: 10.1016/j.molcata.2014.06.041

Google Scholar

[20] E. C. Subbarao, H. S. Maiti, and K. Srivastava, Martensitic Transformation in Zirconia,Phys. Stat. Sol. 9 (1974) 9–40.

DOI: 10.1002/pssa.2210210102

Google Scholar

[21] A. L. C. Pereira, S. . Marchetti, A. Albornoz, P. Reyes, M. Oportus, M. C. Rangel, Effect of iron on the properties of sulfated zirconia, Appl. Catal. 334 (2008) 187–198.

DOI: 10.1016/j.apcata.2007.09.042

Google Scholar

[22] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619.

DOI: 10.1515/iupac.57.0013

Google Scholar

[23] M. Utami, K. Wijaya, and W. Trisunaryanti, Pt-promoted sulfated zirconia as catalyst for hydrocracking of LDPE plastic waste into liquid fuels,Mater. Chem. Phys. 213 (2018) 548–555.

DOI: 10.1016/j.matchemphys.2018.03.055

Google Scholar