Influence of Defects on Solar Cell Characteristics

Article Preview

Abstract:

The current-voltage (I-V) characteristics of most industrial silicon solar cells deviate rather strongly from the exponential behavior expected from textbook knowledge. Thus, the recombination current may be orders of magnitude larger than expected for the given material quality and often shows an ideality factor larger than 2 in a wide bias-range, which cannot be explained by classical theory either. Sometimes, the cells contain ohmic shunts although the cell’s edges have been perfectly insolated. Even in the absence of such shunts, the characteristics are linear or super-linear under reverse bias, while a saturation would be classically expected. Especially in multicrystalline cells the breakdown does not tend to occur at -50 V reverse bias, as expected, but already at about -15 V or even below. These deviations are typically caused by extended defects in the cells. This paper reviews the present knowledge of the origin of such non-ideal I-V characteristics of silicon solar cells and introduces new results on recombination involving coupled defect levels.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Pages:

1-10

Citation:

Online since:

October 2009

Export:

[1] W. Shockley, The Theory of p-n Junctions and p-n Junction Transistors, in: Electrons and Holes in Semiconductors. (D. Van Nostrand, Princeton, NJ, 1950).

Google Scholar

[2] C.T. Sah, R.N. Noyce, W. Shockley, Carrier Generation and Recombination in p-n Junction and p-n Junction Characteristics, Proc. IRE. 45, 1228 (1957).

DOI: 10.1109/jrproc.1957.278528

Google Scholar

[3] K. McIntosh: Lumps, Humps and Bumps: Three Detrimental Effects in the Current-Voltage Curve of Silicon Solar Cells, Ph.D. Thesis, UNSW, Sydney, (2001).

Google Scholar

[4] C.T. Sah: Fundamentals of Solid-State Electronics. (World Scientific, Singapore 1992).

Google Scholar

[5] M. Green: Solar Cells - Operating Principles, Technology and System Applications. (UNSW, Sydney, Australia 1998).

Google Scholar

[6] R.A. Sinton, Predicting multi-crystalline solar cell efficiency from lifetime measured during cell fabrication, Proc. 3rd World Conf. on Photovolt. En. Conv., Osaka 2003, p.1028.

Google Scholar

[7] O. Breitenstein, J. Heydenreich, Non-Ideal I-V-Characteristics of Block-Cast Silicon Solar Cells, Solid State Phenomena 37-38, 139 (1994).

DOI: 10.4028/www.scientific.net/ssp.37-38.139

Google Scholar

[8] S.W. Glunz et al., High-Efficiency Silicon Solar Cells for Low-Illumination Application, Proc. 29th IEEE PPSC, New Orleans 2002, p.450.

Google Scholar

[9] O. Breitenstein, W. Eberhardt, K. Iwig, Imaging the Local Forward Current Density of Solar Cells by Dynamical Precision Contact Thermography, Proc. First World Conf. on Photovoltaic Energy Conversion (WCPEC), Hawaii 1994, p.1633.

DOI: 10.1109/wcpec.1994.520530

Google Scholar

[10] O. Breitenstein, M. Langenkamp: Lock-in Thermography - Basics and Use for Functional Diagnostics of Electronic Components. (Springer, Berlin 2003).

Google Scholar

[11] O. Breitenstein, J.P. Rakotoniaina, G. Hahn, M. Kaes, T. Pernau, S. Seren, W. Warta, J. Isenberg, Lock-in Thermography - A Universal Tool for Local Analysis of Solar Cells, Proc. 20th Eur. Photovoltaic Solar Energy Conference and Exhibition, Barcelona 2005, p.590.

Google Scholar

[12] O. Breitenstein, J.P. Rakotoniaina, Electrothermal simulation of a defect in a solar cell, J. Appl. Phys. 97, 074905 (2005).

DOI: 10.1063/1.1866474

Google Scholar

[13] O. Breitenstein, P. P. Altermatt, K. Ramspeck, A. Schenk, The Origin of Ideality Factors > 2 of Shunts and Surfaces in the Dark I-V Curves of Si Solar Cells, Proc. 21th Eur. Photovoltaic Solar Energy Conference and Exhibition, Dresden 2006, p.625.

DOI: 10.1109/wcpec.2006.279597

Google Scholar

[14] H.J. Queisser, Forward Characteristics and Efficiencies of Silicon Solar Cells, Solid-State Electronics 5, 1 (1962).

DOI: 10.1016/0038-1101(62)90012-6

Google Scholar

[15] A. Kaminski, J.J. Marchand, H. El Omari, A. Laugier, Q.N. Le, D. Sarti, Conduction Processes in Silicon Solar Cells, Proc. 25th IEEE PVSC, Washington DC 1996, p.573.

DOI: 10.1109/pvsc.1996.564071

Google Scholar

[16] A. Schenk, U. Krumbein, Coupled Defect -Level Recombination: Theory and Application to Anormalous Diode Characteristics, J. Appl. Phys. 78, 3185 (1995).

DOI: 10.1063/1.360007

Google Scholar

[17] R. Kühn, P. Fath, E. Bucher, Effects of pn-Junction Bordering on Surfaces Investigated by Means of 2D-Modeling, Proc. 28th IEEE PVSC, Anchorage 2000, p.116.

DOI: 10.1109/pvsc.2000.915768

Google Scholar

[18] Sentaurus, TCAD, Synopsys Inc., Mountain View, CA, (2005).

Google Scholar

[19] N.F. Mott: Metal-Insulator Transitions. (Taylor & Francis, London 1990).

Google Scholar

[20] J. Bauer, J. -M. Wagner, A. Lotnyk, H. Blumtritt, B. Lim, J. Schmidt, O. Breitenstein, Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits, Phys. Stat. Sol. RRL 3, 40 (2009).

DOI: 10.1002/pssr.200802250

Google Scholar

[21] D. Lausch, K. Petter, H. v. Wenckstern, M. Grundmann, Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells, Phys. Stat. Sol. RRL 3, 70 (2009).

DOI: 10.1002/pssr.200802264

Google Scholar

[22] O. Breitenstein, J. Bauer, J. -M. Wagner, A. Lotnyk, Imaging Physical Parameters of PreBreakdown Sites by Lock-in Thermography Techniques, Prog. Photovolt: Res. Appl. 16, 679 (2008).

DOI: 10.1002/pip.848

Google Scholar

[23] S.M. Sze, G. Gibbons, Effect of Junction Curvature on Breakdown Voltage in Semiconductors, Solid-State Electronics 9, 831 (1966).

DOI: 10.1016/0038-1101(66)90033-5

Google Scholar

[24] O. Breitenstein, J.P. Rakotoniaina, M.H. Al Rifai, M. Werner, Shunt Types in Crystalline Silicon Solar Cells, Prog. Photovolt: Res. Appl. 12, 529 (2004).

DOI: 10.1002/pip.544

Google Scholar

[25] Hejjo Al Rifai, O. Breitenstein, J.P. Rakotoniaina, M. Werner, Investigation of MaterialInduced Shunts in Block-Cast Multicrystalline Silicon Solar Cells Caused by SiC Precipitate Filaments, Proc. 19th Eur. Photovoltaic Solar Energy Conference and Exhibition, Paris 2004, p.632.

Google Scholar

[26] J. Bauer, O. Breitenstein, J.P. Rakotoniaina, Electronic activity of SiC precipitates in multicrystalline solar silicon, phys. stat. sol. (a) 204, 2190 (2007).

DOI: 10.1002/pssa.200675436

Google Scholar