The Influence of Strain Rate and Strain Intensity on Retained Austenite Content in Structure of Steel with TRIP Effect

Article Preview

Abstract:

TRIP (transformation induced plasticity) steels are low and medium-carbon steels containing soft ferritic groundmass responsible for low yield point and phases of hard particles such as martensite and/or bainite, which ensure high values of tensile strength. The most important content in structure of TRIP steel is occupied by a non-transformation retained austenite. The advantageous properties of these steels are obtained as a result of martensite transformation generated by plastic deformation process. The retained austenite induces increase of steel plasticity till the moment when by the impact of plastic deformation will undergo deformation in martensite, which results in the increase of steel mechanical properties. The speed of transformation of retained austenite in martensite is highly dependent on strain magnitude and strain rate magnitude. The paper presents the research of strain rate and intensity on retained austenite content ensuring TRIP effect in structure of low carbon steel (0.29%C). Finite element analysis for different strain rate and strain degree values in upsetting test was performed by means of software FORGE 3D. The practical analysis obtained from simulation results was realized by using metallurgical processes simulator Gleeble 3800.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 165)

Pages:

216-220

Citation:

Online since:

June 2010

Export:

Price:

[1] F. Grosman: �owoczesne stale na blachy tłoczne dla motoryzacji. Obróbka Plastyczna Metali, No 4 (2002), pp.5-15 (in Polish).

Google Scholar

[2] O. Covarrubias, M. P Guerrero, R. Colás, R. Petrov, L. Kestens, Y. Houbaert: Transformation behaviour of Si and Mn bearing low carbon steels. TRIP - Int. Conf. on TRIP Aided High Strength Ferrous Alloys, GRIPS - Proceedings, Ghent, Belgium, Germany (2002).

DOI: 10.1002/srin.200200198

Google Scholar

[3] W. Shi, L. Li, Y. Zhou, R. Y Fu, Wei Xi Ch, B. C De Cooman, P. Wollants, X. D Zhu, L. Wang: Effect of Mn content on the microstructures and mechanical properties of cold rolled 0. 15C0. 6Si-Mn TRIP steels. TRIP - Int. Conf. on TRIP Aided High Strength Ferrous Alloys, GRIPS - Proceedings, Ghent, Belgium, Germany (2002).

DOI: 10.1002/srin.200200198

Google Scholar

[4] E. Girault, A. Mertes, P. Jacques, Y. Houbaert, B. Verlinden, J. Humbeeck: Comparison of the effects of silicon and aliminium on the tensile behaviour of muliphase TRIP-assisted steels. Scripta mater. Vol. 44 (2001), pp.885-892.

DOI: 10.1016/s1359-6462(00)00697-7

Google Scholar

[5] F. Grosman, J. Herian: Kształtowanie mikrostruktury w procesach wytwarzania wysokowytrzymałościowych drutów ze stali ferrytyczno-martenzytycznej. Inzynieria Materiałowa, No 3 (1990), pp.68-71 (in Polish).

Google Scholar

[6] S. Wiewiórowska: Określenie parametrów dwustopniowej obróbki cieplnej zapewniających uzyskanie w strukturze końcowej niskowęglowej stali maksymalnej ilości austenitu szczątkowego decydującego o efekcie TRIP. Hutnik - Wiadomości Hutnicze, No 1 (2009).

DOI: 10.15199/24.2019.12.4

Google Scholar

[7] A. Henzel, T. Spittel: Rasciet energosilovykh parametrov v processakh obrobotki metallov davlenijem. (Metalurgija, Moskva 1982), p.360 (in Russian).

Google Scholar