Assessment of Shear Bond Strength of Thermal Spray Coatings by Applying Prismatic Samples

Article Preview

Abstract:

The purpose of this study was the research for a non-standardized method of measuring the shear bond strength at constant compression force and compare with the shear testing methods on cylindrical and prismatic samples, like DIN 50161:1977-10, DIN EN15340-2007. The conducted comparative analysis showed a significant shortcoming of the well-known methods for assessing the shear bond strength on samples for industrial application. The main one is an inability to measure the “actual/real” adhesion shear strength of thermal spray coatings for industrial parts. The shear bond strength of plasma-sprayed coating MgAl2O4 with thickness 0.30-has been investigated by applying the prismatic samples (linear dimensions of shear area 1.5-), using Nanovea scratch tester at compression forces ranging from 1 to 70 N. Shear force-displacement curves get essential information about adhesion/cohesion, delamination and cracking properties of thermal spray coating. An increase of shear forces is primarily associated with a rise in friction forces at the coating delamination boundary. Applying for parts of the ITER blanket modules, this research has demonstrated the importance of practical application of the shear testing results at compressive loads for ensuring product life.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 337)

Pages:

35-41

Citation:

Online since:

October 2022

Export:

Price:

* - Corresponding Author

[1] Thermal Spraying – Determination of Shear Load Resistance of Thermally Sprayed Coatings, DIN EN 15340:2007-06, Beuth: Berlin, Germany, (2007).

DOI: 10.3403/30139235

Google Scholar

[2] Testing of Thermally Sprayed Metallic Coats; Determination of the Adhesive Shear Strength in Shearing Test, DIN 50161:1977-10, Beuth: Berlin, Germany, (1977).

Google Scholar

[3] M. Hadad, G. Marot, P. Démarécaux, D. Chicot, J. Lesage, L. Rohr, and St. Siegmann, Adhesion tests for thermal spray coatings: Сorrelation of bond strength and interfacial toughness, J. Surface Engineering. 23(4) (2007) 279-283.

DOI: 10.1179/174329407x215159

Google Scholar

[4] G. Marot, P. Démarécaux, J. Lesage, M. Hadad, St. Siegmann, and M.H. Staia, The interfacial indentation test to determine adhesion and residual stresses in NiCr VPS coatings, Surf. Coat. Tech. 202(18) (2008) 4411-4416.

DOI: 10.1016/j.surfcoat.2008.04.018

Google Scholar

[5] M. Hadad, G. Marot, P. Démarécaux, J. Lesage, J. Michler, and St. Siegmann, Adhesion tests tor thermal spray coatings: Application range of tensile, shear and interfacial indentation methods, in: E. Lugscheider (Eds.), Thermal Spray 2005: Thermal Spray connects: Explore its surfacing potential!, Basel, Switzerland, DVS-German Welding Society, 2005, pp.759-764.

DOI: 10.31399/asm.cp.itsc2005p0759

Google Scholar

[6] Z. Chen, K. Zhou, X. Lu, and Y.C., Lam, A review on the mechanical methods for evaluating coating adhesion, Acta Mech. 225 (2014) 431-452.

DOI: 10.1007/s00707-013-0979-y

Google Scholar

[7] C. Lyphout, P. Nylen, L. Ostergren, Adhesion strength of HVOF sprayed IN718 coatings, J. Therm. Spray Tech. 21(1) (2012) 86-95.

DOI: 10.1007/s11666-011-9689-y

Google Scholar

[8] C. Lyphout, P. Nylen, and L. Ostergren, Relationships between process parameters, microstructure and adhesion strength of HVOF sprayed IN718 coatings, J. Therm. Spray Tech. 20(1-2) (2010) 76-82.

DOI: 10.1007/s11666-010-9543-7

Google Scholar

[9] V.A. Fedorov, I.V. Ushakov, I.E. Permyakova, Mechanical properties and crystallization of an annealed cobalt-based amorphous alloy, Metally. 3 (2004) 293-297.

Google Scholar

[10] V. Kolganov, I. Poddubnyi, S. Timofeev, M. Sviridenko, A.Razmerov, Yu. Strebkov, I. Danolov, S. Khomiakov and et al., Optimization and adjustment of impact set-up for testing of insulated pads of ITER blanket module connectors and first wall, Fusion Engineering and Design. 146(Part B) (2019) 2474-2478.

DOI: 10.1016/j.fusengdes.2019.04.022

Google Scholar

[11] Yu.G. Dragunov, A.Yu. Leshukov, Yu.S. Strebkov, S.Yu. Kirillov, S.V. Makarov, P.D. Trofimovich, V.N. Yolkin, M.N. Sviridenko, and et al., Development of design, manufacture and experimental proof of operational availability of ITER blanket components, Prob. of Atomic Science and Tech., Ser. Thermonuclear Fusion. 39(4) (2016) 13-26.

DOI: 10.21517/0202-3822-2016-39-4-13-26

Google Scholar

[12] M.N. Sviridenko, A.Yu. Leshukov, S.N. Tomilov, I.I. Poddubniy, Yu.S. Strebkov, V.M. Safronov, Optimization of mechanical attachment system of ITER first wall, Prob. of Atomic Science and Tech., Ser. Thermonuclear Fusion. 43(4) (2020) 15-26.

DOI: 10.21517/0202-3822-2020-43-4-15-26

Google Scholar

[13] A.Yu. Leshukov, Yu.S. Strebkov, M.N. Sviridenko, V.M. Safronov, and A.B. Putrik, Design, manufacture, and experimental serviceability validation of ITER blanket components, Physics of Atomic Nuclei. 80(7) (2017) 1249-1260.

DOI: 10.1134/s1063778817070092

Google Scholar

[14] T. Ciceroa, M. Jimeneza, G. D'Amicoa, J. A. Pou. G. Dellopoulosa, E. Alvaroa, S. Cardenesa, S. Banettaa and et al., Progress in the design of normal heat flux first wall panels for ITER, Fusion Engineering and Design. 98-99 (2015) 1256-1262.

DOI: 10.1016/j.fusengdes.2015.01.023

Google Scholar

[15] M. Sviridenko, A. Leshukov, S. Tomilov, Yu. Strebkov, M. Khokhlov, E. Okuneva, A. Gervash, V. Safronov, and et al., Analysis of enhanced heat flux first wall behavior under ITER pulsed load, Fusion Engineering and Design. 158 (2020) 111897.

DOI: 10.1016/j.fusengdes.2020.111897

Google Scholar

[16] K. Wang, J. Chen, P. Wang, X. Liu, L. Bao, R. Raffray, V. Barabash, Z. Wang, and et al., China's technological achievements on ITER enhanced heat flux wall in the pre-PA qualification, Fusion Engineering and Design. 146(Part B) (2019) 2045-2048.

DOI: 10.1016/j.fusengdes.2019.03.098

Google Scholar

[17] A.N. Zaytzev, Yu.S. Strebkov, A.Yu. Leshukov, V.M. Ivanov, L.I. Kuksenova, B.Ya. Sachek, A.M. Mezrin, and Yu.P. Aleksandrova, Assessment of critical level of shear stresses in tribocouples of Al2O3 and metal details of ITER blanket modules, J. of Mach. Manuf. and Reliab. 45(6) (2016) 522-530.

DOI: 10.3103/s1052618816060145

Google Scholar

[18] V. Rozov, V. Belyakov, V. Kukhtin, E. Lamzin, I. Mazul, and S. Sytchevsky, Strategy for solving a coupled problem of the electromagnetic load analysis and design optimization for local conducting structures to support the ITER blanket development, Fusion Engineering and Design. 89(11) (2014) 2691-2708.

DOI: 10.1016/j.fusengdes.2014.07.007

Google Scholar

[19] S.I. Dos'ko, V.M. Utenkov & A.A. Molchanov, Spectral Analysis in Machine-Tool Diagnostics, Russ. Engin. Res. 41 (2021) 795-799.

DOI: 10.3103/s1068798x21090082

Google Scholar

[20] V.M. Utenkov, S.I. Dos'ko, A.A. Molchanov, A.R. Brengauz, Modal diagnostics of lathe designs with composite bases, Russ. Engin. Res. 39 (2019) 726-731.

DOI: 10.3103/s1068798x19090223

Google Scholar

[21] St. Siegmann, M. Dvorak, H. Grützner, K. Nassenstein, A. Walter, Shear testing for characterizing the adhesive and cohesive coating strength without the need of adhesives, E. Lugscheider (Eds.), in: Thermal Spray 2005: Thermal Spray connects: Explore its surfacing potential!, May 2-4, 2005 (Basel, Switzerland), DVS-German Welding Society, 2005, pp.823-829.

DOI: 10.31399/asm.cp.itsc2005p0823

Google Scholar

[22] Information on https://www.novaswiss.com/files/novaswiss/oberflaechentechnik/novaswiss-surface-technology-en.pdf.

Google Scholar

[23] K. Kaneko, Evaluation of the shearing strength of a WC-12Co thermal spray coating scraping test method, Coatings. 5 (2015) 278-292.

DOI: 10.3390/coatings5030278

Google Scholar

[24] A.N. Zaytzev, Yu.P. Aleksandrova, A.G. Yagopolsky, Comparative analysis of methods for assessing adhesion strength of thermal spray coatings, BMSTU Journal of Mechanical Engineering. 5(734) (2021) 48-59.

Google Scholar

[25] Y.L. Zhu, S.N. Ma, and B.S. Xu, Finite-element evaluation and improvement of a test procedure for coating shear bond strength determination, J. of Therm. Spray Tech. 8(2) (1999) 328-332.

DOI: 10.1361/105996399770350557

Google Scholar

[26] G. Bolelli, V. Cannillo, L. Lusvarghi, T. Manfredini, Wear behavior of thermally sprayed ceramic oxide coatings, Wear. 261 (2006) 1298-1315.

DOI: 10.1016/j.wear.2006.03.023

Google Scholar

[27] Information on http://www.el-mech.ru/products/pokryt/pokryt_67.html.

Google Scholar

[28] I.N. Kravchenko, E.M. Zubrilina, E.V. Pankratov, O.Y. Moskal, Method for evaluation the bond strength of coating taking into account the coefficient of stress concentration, in: Proceedings of Zpravy Vedecke Ideje – 2012: Materialy VIII Mezinarodni Vedecko-Prakticka Konference. Praha: Publishing House Education and Science, s.r.o, pp.5-20.

Google Scholar