Computational Inteligence in Optimization of Machining Operation Parameters of ST-37 Steel

Article Preview

Abstract:

Optimal selection of cutting parameters is one of the significant issues in achieving high quality machining. In this study, a method for the selection of optimal cutting parameters during lathe operation is presented. The present study focuses on multiple-performance optimization on machining characteristics of St-37 steel. The cutting parameters used in this experimental study include cutting speed, feed rate, depth of cut and rake angle. Two output parameters, namely, surface roughness and tool life are considered as process performance. A statistical model based on linear polynomial equations is developed to describe different responses. For optimal conditions, the Non-dominated Sorting Genetic Algorithm (NSGA) is employed in achieving appropriate models. The optimization procedure shows that the proposed method has a high performance in problem-solving.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

456-461

Citation:

Online since:

December 2012

Export:

Price:

[1] Dereli, D., Filiz, I.H., Bayakosoglu, A., Optimizing cutting parameters in process planning of prismatic parts by using genetic algorithms, Int. J. of Production Research, 39 (15) (2001) 3303–3328.

DOI: 10.1080/00207540110057891

Google Scholar

[2] Pandey PPC, Pal S. In: Proceedings of the Third International Conference in Computer Integrated Machining Singapore, 1 (1995) 812–819.

Google Scholar

[3] Hsu VN, Daskin M, Jones PC, Lowe TJ. Tool selection for optimal part production: a Lagrangian relaxation approach, IIE Trans, 27 (1995) 417-426.

DOI: 10.1080/07408179508936758

Google Scholar

[4] N. Srinivas, D. Kalyanmoy, Multiobjective optimization using nondominated sorting in genetic algorithms, J. Evol. Comput., 2(3) (1994) 221-248.

Google Scholar

[5] D. Kanagarajan, R. Karthikeyan, K. Palanikumar, J. P. Davim, Optimization of electrical discharge machining characteristics of WC/Co composites using non-dominated sorting genetic algorithm (NSGA-II), Int. J. Adv. Manuf Tech., 36 (11-12) (2008).

DOI: 10.1007/s00170-006-0921-8

Google Scholar

[6] M. Sivakumar, S. M. Kannan, Optimum Manufacturing Tolerance to Selective Assembly Technique for Different Assembly Specifications by Using Genetic Algorithm, Int. J. Adv. Manuf Tech., 32 (2007) 591-598.

DOI: 10.1007/s00170-005-0337-x

Google Scholar

[7] Deb, K., Amrit, P., Samir, A. and Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6(2) (2002) 182-197.

DOI: 10.1109/4235.996017

Google Scholar

[8] Debabrata, M., Pal., S.K. and Partha, S., Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II', J. Mater. Process. Technol. 186(1-3) (2007).

DOI: 10.1016/j.jmatprotec.2006.12.030

Google Scholar

[9] K. Palanikumar, B. Latha, V.S. Senthilkumar, R. Karthikeyan, Multiple Performance Optimization in Machining of GFRP Composites by a PCD Tool using Non-dominated Sorting Genetic Algorithm (NSGA-II), Met. Mater. Int., 15(2) (2009) 249-258.

DOI: 10.1007/s12540-009-0249-7

Google Scholar

[10] A. Golshan, S. Gohari, and A. Ayob, Computational Intelligence in Optimization of Wire Electrical Discharge Machining of Cold- Work Steel 2601. International Journal of Mechanical & Mechatronics Engineering, 11(4) (2011)14-19.

DOI: 10.1109/cimsim.2011.32

Google Scholar

[11] A. Golshan, S. Gohari, and A. Ayob, Modeling and Optimization of Wire Electrical Discharge Machining of Cold-work Steal 2601. Advanced Materials Research Journal, 383-390 (2009) 6695-6703.

DOI: 10.4028/www.scientific.net/amr.383-390.6695

Google Scholar