Investigation of Dental Biomaterials under Load Using a Digital Image Correlation System

Article Preview

Abstract:

The digital image correlation method was used in this study to investigate heat polymerizable acrylic resin, which is the material of choice for prosthesis in edentulous patients. The aim was to analyze and determine the force-induced displacement and strain of a complete denture in the physiological force field of edentulous patients. An acrylic lower complete denture was made for the edentulous mandible, placed on the residual ridge of the macerated mandible bone, lacquered with spray, and exposed to a force of 300 N. The Digital Image Correlation system (DIC) (GOM, Braunschweig, Germany) was used to measure the strain in the complete denture, consisting of two digital cameras and the software ARAMIS (6.2.0, Braunschweig, Germany). Both fields indicated the maximum dimensional changes occurred just below the point of force incidence. The displacement field registered movements in the range from 0.165 to 0.782 mm and the principal strain field showed strain values between 1.25 and 18.94%. In vitro investigation of the dynamic behavior of the lower complete denture under load by using the optical measuring system-DIC demonstrated that the strain/displacement alterations were generally influenced by prosthesis movement toward the residual alveolar ridge.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-185

Citation:

Online since:

January 2013

Export:

Price:

[1] J. Panduric, M. Husnjak, K. Guljas, K. Kraljevic, J. Zivko-babic, The simulation and calculation of the fatigue of the lower complete denture in function by means of the finite element analysis. Journal of Oral Rehabilitation. 25(7) (1998).

DOI: 10.1046/j.1365-2842.1998.00263.x

Google Scholar

[2] I. Tanasic, A. Milic-Lemic, Lj. Tihacek-Sojic, I. Stancic, N. Mitrovic, Analysis of the compressive strain below the removable and fixed prosthesis in the posterior mandible using a digital image correlation method, Biomech. Model Mechanobiol. 11(6) (2012).

DOI: 10.1007/s10237-011-0348-5

Google Scholar

[3] Lj. Tihacek Sojic, A. Milic Lemic, I. Tanasic, N. Mitrovic, M. Milosevic, Compressive strains and displacement in a partially dentate lower jaw rehabilitated with two different treatment modalities, Gerodontol. 29(2) (2012) e851-e857.

DOI: 10.1111/j.1741-2358.2011.00572.x

Google Scholar

[4] I. Tanasić, Lj. Tihaček-Šojić, A. Milić-Lemić, Optical Metrology Analysis of the Lower Jaw Deformations, Vojnosanitet pregl. 6 (2011) 336-340.

Google Scholar

[5] R.G. Craig, J.M. Powers, J.C. Wataha, Dental materials: Properties and manipulation, St. Louis, Mosby, (2000).

Google Scholar

[6] F.J. Arendts, C. Sigolotto, Mechanical characteristics of the human mandible, and investigation of the in-vivo, reaction of the compact bone: A contribution to the descreption of the biomechanics of the mandible-part II, Biomechanical Engineering. 35 (1990).

DOI: 10.1515/bmte.1990.35.6.123

Google Scholar

[7] F. Muller, M.R. Heath, R. Ott, Maximum bite force after the replacement of complete dentures, Gerodontol. 18 (2001) 58-62.

DOI: 10.1111/j.1741-2358.2001.00058.x

Google Scholar

[8] P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A.A. Pitsillides, S. Shefelbine, Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia, J. Biomech. 43 (2010) 599–605.

DOI: 10.1016/j.jbiomech.2009.10.042

Google Scholar

[9] S. Windisch, R. Jung, I. Sailer, S. Studer, A. Ender, C. Ha¨mmerle, A new optical method to evaluate three dimensional volume changes of alveolar contours: A methodological in vitro study, Clin. Oral Impal. Res. 18 (2007) 545–551.

DOI: 10.1111/j.1600-0501.2007.01382.x

Google Scholar

[10] T. Schmidt, J. Tyson, K. Galanulis, Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: Part 1, Exp. Tech. 27 (2003) 47–50.

DOI: 10.1111/j.1747-1567.2003.tb00115.x

Google Scholar

[11] I. Tanasic, Lj. Tihacek-Sojic, A. Milic Lemic, N. Mitrovic, M. Milosevic, A. Sedmak, Optical aspect of deformities analysis in the bone-denture complex, Coll. Antropol. 36(1) (2012) 173-178.

Google Scholar

[12] I. Tanasic, Lj. Tihacek- Sojic, A. Milic Lemic, N. Mitrovic, M. Milosevic, R. Mitrovic R, T. Maneski, Strain Behavior in the Restored Edentulous Mandible Bone, J. Bioengineer and Biomedical Sci. 1 (2011).

DOI: 10.4172/2155-9538.1000107

Google Scholar

[13] R. Craig, J. Powers, Restorative dental materials, eleventh ed. Mosby, St. Louis, 2002, pp.238-92.

Google Scholar

[14] W.L. Kydd, Complete base deformation with varied occlusal tooth form, J. Prosthet. Dent. 6 (1956) 714-718.

DOI: 10.1016/0022-3913(56)90018-x

Google Scholar

[15] J.S. Rees, R. Huggett, A. Harrison, Finite element analysis of the stress concentrating effect of fraenal notches in complete dentures, Int. J. Prosthodont. 3 (1990) 238-240.

Google Scholar

[16] I. Hayakawa, N. Akiba, K. EnSheng, Y. Kasuga, Physical propertiesof a new denture lining material containing a fluoroalkyl methacrylate polymer, J. Prosth. Dent. 96 (2006) 53-58.

DOI: 10.1016/j.prosdent.2006.05.012

Google Scholar

[17] M.S. Beyli, J.A. von Fraunhofer, An analysis of causes of fracture of acrylic resin dentures, J. Prosthet. Dent. 46 (1981) 238-41.

DOI: 10.1016/0022-3913(81)90206-7

Google Scholar

[18] I. Tanasic, Lj. Tihacek- Sojic, A. Milic Lemic, N. Mitrovic, R. Mitrovic, M. Milosevic, T. Maneski, Analyzing Displacement in the Posterior Mandible using Digital Image Correlation Method, J. Biochip Tissue chip, S1, (2011).

DOI: 10.4172/2153-0777.s1-006

Google Scholar

[19] H.W.A. Wiskott, J.I. Nicholls, U.C. Belser, Stress fatigue: Basic principles and prosthodontic implications, Int. J. Prosthodont. 8 (1995) 105-116.

Google Scholar

[20] J.R. Lambrecht, W.L. Kydd, A functional stress analysis of the maxillary complete denture base, J. Prosthet. Dent. 12 (1962) 865-872.

DOI: 10.1016/0022-3913(62)90039-2

Google Scholar

[21] U.R. Darbar, R. Hugget, A. Harrison, K. Williams, Finite element analysis of stress distribution at the tooth denture base interface of acrylic resin teeth depending from the denture base, Journal of Prosthetic Dentistry. 74 (1995) 591-594.

DOI: 10.1016/s0022-3913(05)80310-5

Google Scholar

[22] U.R. Darbar, R. Hugget, A. Harrison, Stress analysis tehniques in complete dentures, Journal of Dentistry. 22(5) (1994) 259-264.

DOI: 10.1016/0300-5712(94)90054-x

Google Scholar

[22] T. Kawasaki, Y. Takayama, Relationship between the stress distribution and the shape of alveolar residual ridgethree-dimensional behaviour of a lower complete denture, J. Oral Rehab. 28 (2001) 950-957.

DOI: 10.1111/j.1365-2842.2001.00771.x

Google Scholar