Finite Element Analysis of Vertically Loaded Cylindrical Ti Implants

Article Preview

Abstract:

The following study was conducted in order to evaluate the effects of height, width and design variations on the stress distribution of vertically loaded, cylindrical titanium implants using finite element analysis (FEA). Three groups of cylindrical titanium TPS surface implants (Premium, Sweden & Martina, Italy) inserted into mandible segments were analysed. The three Premium implants in the first group were of different length (10.0, 11.5 and 13.0 mm) but possessed the same diameter of 3.80 mm. The second group consisted of three Premium implants with the same length of 11.5 mm but with different diameters (3.30, 3.80 and 4.25 mm). In the last group two different implant designs were compared, one featuring platform switching and a straight emergence profile and the other without platform switching. Overall, eight implant-bone samples were analyzed and the resulting stress distributions during vertical loading were obtained. For all eight samples, maximum stress values were found in the area of the implant neck and the stress values decreased in the apical direction. The higher stress values in the second group were detected in the implant with smaller diameter. It was noted that the implant with platform switching experienced lower stresses than the one without platform switching. Changes in length did not have any significant effect on the stress distribution. Under a vertical occlusal load, an implant with a larger diameter and with platform switching had the most favorable stress distribution throughout the implant structure and the adjacent bone tissue.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-262

Citation:

Online since:

January 2013

Export:

Price:

[1] W. Carvalho, P.L. Casado, A.L. Caúla, E.P. Barboza, Implants for Single First Molar Replacement: Important Treatment Concerns, Implant Dent. 4 (2006) 328-335.

DOI: 10.1097/01.id.0000148558.80761.bf

Google Scholar

[2] T. Jemt, W.R. Laney, D. Harris, P.J. Henry, P.H.J. Krogh, G. Polizzi, G.A. Zarb, I. Herrmann, Osseointegrated Implants for Single Tooth Replacement: A 1-year Report from a Multicenter Prospective study, Int. J. Oral Maxillofac Implants. 1 (1991).

Google Scholar

[3] D.G. Graiton, S.A. Aquilino, C.M. Standford, Micromotion and dynamic fatigue properties of dental implant – abutment interface, J. Prosthet. Dent. 85 (2001) 47-52.

DOI: 10.1067/mpr.2001.112796

Google Scholar

[4] B. Rangert, P.H. Krogh, B. Langer, N. Van Roekel, Bending overload and implant fracture: A retrospective clinical analysis, Int. J. Oral Maxillofac Implants. 10(3) (1995) 326-34.

Google Scholar

[5] C.J. Goodacre, J.Y. Kan, K. Rungcharassaeng, Clinical complications of osseointegrated implants, J. Prosthet. Dent. 81(5) (1999) 537-52.

DOI: 10.1016/s0022-3913(99)70208-8

Google Scholar

[6] A. Piattelli, A . Scarano, M . Piattelli, E. Vaia, S. Matarasso, Hollow implants retrieved for fracture: A light and scanning electron microscope analysis of 4 cases, J. Periodontol. 69(2) (1998) 185-9.

DOI: 10.1902/jop.1998.69.2.185

Google Scholar

[7] G. Brunel, S. Armand, N. Miller, J. Rue, Histologic analysis of a fractured implant: A case report, Int. J. Periodontics Restorative Dent. 20(5) (2000) 520-6.

Google Scholar

[8] D. Flanagan, External and occlusal trauma to dental implants and a case report, Dent. Traumatol. 19(3) (2003) 160-4.

DOI: 10.1034/j.1600-9657.2003.00144.x

Google Scholar

[9] R. Gapski, H.L. Wang, P. Mascarenhas, N.P. Lang, Critical review of immediate implant loading, Clin. Oral Implants Res. 14 (5) (2003) 515–527.

DOI: 10.1034/j.1600-0501.2003.00950.x

Google Scholar

[10] U. Lekholm, Immediate/early loading of oral implants in compromised patients, Periodontol. (33) (2000, 2003) 194–203.

DOI: 10.1046/j.0906-6713.2003.03316.x

Google Scholar

[11] C.J. Goodacre, G. Bernal, K. Rungcharassaeng, J.Y.K. Kan, Clinical complications with implants and implant prostheses, J. Prosthet. Dent. 90 (2003) 121–132.

DOI: 10.1016/s0022-3913(03)00212-9

Google Scholar

[12] H.L. Huang, J.T. Hsu, L.J. Fuh, M.G. Tu, C.C. Ko, Y.W. Shen, Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study, J. Dent. 36 (2008) 409–417.

DOI: 10.1016/j.jdent.2008.02.015

Google Scholar

[13] S. Hansson, M. Werke, The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: a finite element study, J. Biomech. 36 (2003) 1247–1258.

DOI: 10.1016/s0021-9290(03)00164-7

Google Scholar

[14] M.A. Sánchez-Gárces, C. Gay-Escoda, Periimplantitis, Med. Oral Patol. Oral Cir. Bucal. 9 (Suppl 69-74) (2004) 63-9.

Google Scholar

[15] R. Uribe, M. Peñarrocha, J.M. Sanchis, O. García, Marginal periimplantitis due to occlusal overload, A case report, Med. Oral. 9(2) (2004) 160-2, 159-60.

Google Scholar

[16] S.N. Akour, M.A. Fayyad, J.F. Nayfeh, Finite element analyses of two antirotational designs of implant fixtures, Implant Dent. 14 (2005) 77-80.

DOI: 10.1097/01.id.0000156388.73638.a7

Google Scholar

[17] J.P. Geng, K.B.C. Tan, G.R. Liu, Application of finite element analysis in implant dentistry: A review of literature, J. Prosthet. Dent. 85 (2001) 585-607.

Google Scholar

[18] U. Lekholm, G.A. Zarb, Patient selection and preparation, in: P. -I. Branemark, G.A. Zarb, T. Albrektsson (Eds. ), Tissue-Integrated Prostheses: Osseointegra- tion in Clinical Dentistry, Quintessence, Chicago, 1985, p.128–135.

Google Scholar

[19] Y. Sato, M. Wadamoto, K. Tsuga, E.R. Teixeira, The effectiveness of element downsizing on a three-dimensional finite element model of bone trabeculae in implant biomechanics, J. Oral Rehabil. 26 (1999) 288–291.

DOI: 10.1046/j.1365-2842.1999.00390.x

Google Scholar

[20] S. Sahin, M.C. Cehreli, E. Yalcın, The influence of functional forces on the biomechanics of implant-supported prostheses—a review, J. Dent. 20 (2002) 271–82.

Google Scholar

[21] A. Mellal, H.W. Wiskott, J. Botsis, S.S. Scherrer, U.C. Belser, Stimulating effect of implant loading on surrounding bone, comparison of three numerical models and validation by in vivo data, Clin. Oral Implants Res. 15 (2004) 239–248.

DOI: 10.1111/j.1600-0501.2004.01000.x

Google Scholar

[22] J.B. Brunski, Biomechanical factors affecting the bone–dental implant inter- face, Clin. Mater. 10 (1992) 153–201.

DOI: 10.1016/0267-6605(92)90049-y

Google Scholar

[23] J.B. Brunski, In vivo bone response to biomechanical loading at the bone/ dental-implant interface, Adv. Dent. Res. 13 (1999) 99–119.

DOI: 10.1177/08959374990130012301

Google Scholar

[24] H. Van Oosterwyck, J. Duyck, J. Vander Sloten, G. Vander Perre, M. De Cooman, S. Lievens, R. Puers, I. Naert, The influence of bone mechanical properties and implant fixation upon bone loading around oral implants, Clin. Oral Implants Res. 9 (1996).

DOI: 10.1201/9781003078289-92

Google Scholar

[25] J. Duyck, H.J. Renold, H. Van Oosterwyck, I. Naert, J. Vander Sloten, J.E. Ellingsen, The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: An animal experimental study, Clin. Oral Implants Res. 12 (2001).

DOI: 10.1034/j.1600-0501.2001.012003207.x

Google Scholar

[26] R. Gapski, H.L. Wang, P. Mascarenhas, N.P. Lang, Critical review of immediate implant loading, Clin. Oral Implants Res. 14 (2003) 515–527.

DOI: 10.1034/j.1600-0501.2003.00950.x

Google Scholar

[27] O. Dilek, E. Tezulas, M. Dincel, Required minimum primary stability and torque values for immediate loading of mini dental implants: An experi- mental study in nonviable bovine femoral bone, Oral Surg. Oral Med. Oral Patho. l Oral Radio. l Endod. 105 (2008).

DOI: 10.1016/j.tripleo.2007.10.003

Google Scholar

[28] C.E. English, Biomechanical concerns with fixed partial dentures involving implants, Implant Dent. 2 (1993) 221-42.

DOI: 10.1097/00008505-199312000-00002

Google Scholar

[29] C.E. Misch, M.W. Bidez, Occlusion and crestal bone resorption: Etiology and treatment planning strategies for implants, in: C. McNeill (Ed. ) Science and practice of occlusion, Quintessence, Chicago, 1997, pp.473-86.

Google Scholar

[30] B.R. Rangert, R.M. Sullivan, T.M. Jemt, Load factor control for implants in the posterior partially edentulous segment, Int. J. Oral Maxillofac. Implants. 12 (1997) 360-70.

Google Scholar

[31] C.E. Misch, Occlusal considerations for implant supported prosthetics, in: C.E. Misch (Ed. ) Contemporary implant dentistry, Mosby Year Book, St. Louis, 1993, pp.705-33.

DOI: 10.1016/b978-0-323-07845-0.00031-2

Google Scholar

[32] L. Himmlová, T. Dostálová, A. Kácovský, S. Konvicková, Influence of implant length and diameter on stress distribution: a finite element analysis, J. Prosthet. Dent. 91(1) (2004) 20-5.

DOI: 10.1016/j.prosdent.2003.08.008

Google Scholar

[33] J. Brink, J. Stephen, S.J. Meraw, D.P. Sarment, Influence of implant diameter on surrounding bone, Clinical Oral Implants Research. 18(5) (2007) 563–568.

DOI: 10.1111/j.1600-0501.2007.01283.x

Google Scholar

[34] A. Schroeder, Oral implantology: Basic, ITI hollow cylinder system, Thieme Medical Publishers, New York, 1996, p.60–65.

Google Scholar

[35] H.J. Chun, H.S. Shin, C.H. Han, S.H. Lee, Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis, Int. J. Oral Maxillofac Implants. 21 (2006) 195-202.

Google Scholar