Molecular Dynamics Prediction of the Influence of Composition on Thermotransport in Ni-Al Melts

Article Preview

Abstract:

The influence of composition on thermotransport (coupling between mass and heat transport) in Ni-Al melts is investigated by making use of equilibrium molecular dynamics simulations in conjunction with the Green-Kubo formalism. To describe interatomic interactions in Ni-Al melt models, we employ the embedded-atom method potential developed in [G.P. Purja Pun, Y. Mishin, Phil. Mag., 2009, 89, 3245]. It is demonstrated that the employed interatomic potential gives good agreement with the recent experimental study [E. Sondermann, F. Kargl, A. Meyer, Presented at the 12th International Conference on Diffusion in Solids and Liquids (DSL-2016), 26-30 June 2016, Split, Croatia] regarding the direction of thermotransport in Al-rich liquid Ni-Al alloys. Moreover, the predicted values of the reduced heat of transport (the quantity which explicitly characterizes both the magnitude and direction of thermotransport) in Ni-Al melts, reveal fairly weak composition dependence while being practically independent of temperature at all. Accordingly, in the presence of a temperature gradient, our simulation results for the models of liquid Ni25Al75, Ni50Al50 and Ni75Al25 alloys predict consistently Ni and Al to migrate to the cold and hot ends, respectively. Meanwhile, the highest value, about eV, of the reduced heat of transport is observed for Ni50Al50 alloy model and it slightly decreases towards Al-rich and Ni-rich compositions.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 12)

Pages:

93-110

Citation:

Online since:

September 2017

Export:

Price:

[1] D.B. Miracle, Acta Metall. Mater., 1993, 41, 649.

Google Scholar

[2] R.D. Noebe, R.R. Bowman, M.V. Nathal, Int. Mater. Rev., 38, 193.

Google Scholar

[3] Intermetallic Compounds: Structural Applications, Vol. 4, edited by J.H. Westbrook and R.L. Fleischer (Wiley, New York, 2000).

Google Scholar

[4] Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, edited by S.C. Deevi, P.J. Maziasz, V.K. Sikka, R.W. Cahn (ASM International, Metals Park, OH, 1997).

DOI: 10.1080/10667857.1997.11752751

Google Scholar

[5] S.C. Deevi, D.G. Morris, V.K. Sikka (Eds.), Mater. Sci. Eng., 1998, A 258 (special issue).

Google Scholar

[6] J. Horbach, S.K. Das, A. Griesche, M.-P. Macht, G. Frohberg, A. Meyer, Phys. Rev., 2007, B 75, 174304.

Google Scholar

[7] A. Kerrache, J. Horbach, K. Binder, Europhys. Lett., 2008, 81, 58001.

Google Scholar

[8] A. Griesche, B. Zhang, J. Horbach, A. Meyer, Defect and Diffusion Forum, 2009, 289-292, 705.

DOI: 10.4028/www.scientific.net/ddf.289-292.705

Google Scholar

[9] S. Stüber, D. Holland-Moritz, T. Unruh, A. Meyer, Phys. Rev., 2010, B 81, 024204.

Google Scholar

[10] A.V. Evteev, E.V. Levchenko, I.V. Belova, R. Kozubski, Z.-K. Liu, G.E. Murch, Diffusion Foundations, 2014, 2, 159.

Google Scholar

[11] A.V. Evteev, E.V. Levchenko, I.V. Belova, R. Kozubski, Z.-K. Liu, G.E. Murch, Phil. Mag., 2014, 94, 3574.

Google Scholar

[12] P. Kuhn, J. Horbach, F. Kargl, A. Meyer, Th. Voigtmann, Phys. Rev., 2014, B 90, 024309.

Google Scholar

[13] A.V. Evteev, E.V. Levchenko, L. Momenzadeh, Y. Sohn, I.V. Belova, G.E. Murch, Phil. Mag., 2015, 95, 90.

Google Scholar

[14] E. Sondermann, F. Kargl, A. Meyer, Phys. Rev., 2016, B 93, 184201.

Google Scholar

[15] E. Sondermann, F. Kargl, A. Meyer, Thermodiffusion in liquid Al-Ni measured by X-ray radiography,, Presented at the 12th International Conference on Diffusion in Solids and Liquids (DSL-2016), 26-30 June 2016, Split, Croatia.

Google Scholar

[16] E.V. Levchenko, A.V. Evteev, T. Ahmed, A. Kromik, R. Kozubski, I.V. Belova, Zi-Kui Liu, G.E. Murch, Phil. Mag., 2016, 96, 3054.

DOI: 10.1080/14786435.2016.1223893

Google Scholar

[17] W.C. Tucker, P.K. Schelling, Comput. Mater. Sci., 2016, 124, 54.

Google Scholar

[18] S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

Google Scholar

[19] D.D. Fitts, Nonequilibrium Thermodynamics (McGraw-Hill Book Company, Inc, New York, 1962).

Google Scholar

[20] Y. Mishin, M.J. Mehl and D.A. Papaconstantopoulos, Phys. Rev., 2002, B 65, 224114.

Google Scholar

[21] G.P. Purja Pun, Y. Mishin, Philosophical Magazine, 2009, 89, 3245.

Google Scholar

[22] M. Daw and M.I. Baskes, Phys. Rev., 1984, B 29, 6443.

Google Scholar

[23] M.S. Green, J. Chem. Phys., 1954, 22, 398.

Google Scholar

[24] R. Kubo, J. Phys. Soc. Japan, 1957, 12, 570.

Google Scholar

[25] J.H. Irving and J.G. Kirkwood, J. Chem. Phys., 1950, 18, 817.

Google Scholar

[26] M.J. Gillan, J. Phys. C: Solid State Phys., 1987, 20, 521.

Google Scholar

[27] L. Verlet, Phys. Rev., 1967, 159, 98.

Google Scholar