Theoretical Study of the Heat of Transport in a Liquid Ni50Al50 Alloy: Green-Kubo Approach

Article Preview

Abstract:

We analyse the formalism of transport in a binary system especially focussing on a detailed consideration of the heat of transport parameter characterizing diffusion driven by a temperature gradient. We introduce the reduced heat of transport parameter Qc*' which characterizes part of the interdiffusion flux that is proportional to the temperature gradient. In an isothermal system Qc*' represents the reduced heat flow (pure heat conduction) consequent upon unit interdiffusion flux. We demonstrate that Qc*' is independent of reference frame and is practically useful for direct comparison of simulation and experimental data from different sources obtained in different reference frames. Then, we use equilibrium molecular dynamics simulations in conjunction with the Green-Kubo formalism to study the heat transport properties of a model of the liquid Ni50Al50 alloy at three state points within the temperature range 1500 – 4000 K. Our results predict that in the liquid Ni50Al50 alloy in the presence of a temperature gradient Ni tends to diffuse from the cold end to the hot end whilst Al tends to diffuse from the hot end to the cold end.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-189

Citation:

Online since:

September 2014

Export:

Price:

* - Corresponding Author

[1] S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, (1962).

Google Scholar

[2] D.D. Fitts, Nonequilibrium Thermodynamics, McGraw-Hill Book Company, Inc, New York, (1962).

Google Scholar

[3] A.R. Allnatt and A.B. Lidiard, Atomic Transport in Solids, Cambridge University Press, Cambridge, (1993).

Google Scholar

[4] S. Van Vaerenbergh, S.R. Coriell and G.B. McFadden, J. Cryst. Growth., 2001, 223, 565-572.

Google Scholar

[5] B.N. Bhat, J. Cryst. Growth. 28 (1975) 68-76.

Google Scholar

[6] A. Ott, Science 164 (1969) 297.

Google Scholar

[7] C.Q. Ru, J. Mater. Sci. 35 (2000) 5575-5579.

Google Scholar

[8] M. Sugisaki, K. Idemitsu, S. Mukai and H. Furuya, J. Nucl. Mater. 104 (1981) 1493-1497.

Google Scholar

[9] K. Hashizume, K. Ogushi, T. Otsuka and T. Tanabe, J. Nucl. Mater. 417 (2011) 1175-1178.

Google Scholar

[10] M. Eslamian, F. Sabzi and M.Z. Saghir, Phys. Chem. Chem. Phys. 12 (2010) 13835-13848.

Google Scholar

[11] M. Eslamian, C.G. Jiang and M.Z. Saghir, Phil. Mag. 92 (2012) 705-726.

Google Scholar

[12] M.J. Gillan and M.W. Finnis, J. Phys. C: Solid State Phys. 11 (1978) 4469-4483.

Google Scholar

[13] D. MacGowan and D.J. Evans, Phys. Rev. A 34 (1986) 2133-2142.

Google Scholar

[14] D.J. Evans, D. MacGowan, Phys. Rev. A 36 (1987) 948-950.

Google Scholar

[15] M.J. Gillan, J. Phys. C: Solid State Phys. 20 (1987) 521-538.

Google Scholar

[16] R. Vogelsang, C. Hoheisel, G.V. Paolini, G. Ciccotti A 36 (1987) 3964-3974.

Google Scholar

[17] B. Hafskjold, T. Ikeshoji and S.K. Ratkje, Molecular Physics, 1993, 80, 1389-1412.

DOI: 10.1080/00268979300103101

Google Scholar

[18] C. Jones, P.J. Grout and A.B. Lidiard, Phil. Mag. Lett. 74 (1996) 217-223.

Google Scholar

[19] C. Jones, P.J. Grout and A.B. Lidiard, Phil. Mag. A 79 (1999) 2051-(2070).

Google Scholar

[20] D. Reith and F. Müller-Plathe, Journal of Chemical Physics 112 (2000) 2436-2443.

Google Scholar

[21] A. Perronace, G. Ciccotti, F. Leroy, A.H. Fuchs and B. Rousseau, Phys. Rev. E 66 (2002) 031201.

Google Scholar

[22] P.J. Grout and A.B. Lidiard, J. Phys.: Condens. Matter. 20 (2008) 425201.

Google Scholar

[23] K.A.M. Dickens, P.J. Grout and A.B. Lidiard, J. Phys.: Condens. Matter. 23 (2011) 265401.

Google Scholar

[24] Z. McDargh and P.K. Schelling, Computational Materials Science 50 (2011) 2363-2370.

Google Scholar

[25] P.K. Schelling and T. Le, Journal of Applied Physics 112 (2012) 083516.

Google Scholar

[26] W.C. Tucker, L. Shokeen and P.K. Schelling, Journal of Applied Physics 114 (2013) 063509.

Google Scholar

[27] B.N. Bhat and R.A. Swalin, Acta Metallurgica 20 (1972) 1387-1396.

Google Scholar

[28] J.H. Kreuzer, Non-equilibrium Thermodynamics and Its Statistical Foundations, Clarendon Press, Oxford, (1981).

Google Scholar

[29] P.G. Shewmon, Diffusion in Solids, Minerals, Metals and Materials Society, Warrendale, Pennsylvania, (1989).

Google Scholar

[30] L.J.T.M. Kempers, Journal of Chemical Physics 115 (2001) 6330-6341.

Google Scholar

[31] A.R. Allnatt, J. Phys. A: Math. Gen. 34 (2001) 7441-7458.

Google Scholar

[32] H. Mehrer, Diffusion in Solids, Springer, Berlin, (2007).

Google Scholar

[33] R.J. Asaro, D. Farkas and Y. Kulkarni, Acta Materialia 56 (2008) 1243-1256.

Google Scholar

[34] L. Onsager, Phys. Rev. 37 (1931) 405-426.

Google Scholar

[35] L. Onsager, Phys. Rev. 38 (1931) 2265-2279.

Google Scholar

[36] M.S. Green, J. Chem. Phys. 22 (1954) 398.

Google Scholar

[37] R. Kubo, J. Phys. Soc. Japan 12 (1957) 570.

Google Scholar

[38] W.A. Oates and J.G. Shaw, Metall. Trans. 1 (1970) 3237.

Google Scholar

[39] D. Longrée, J. Legros, G. Thomaes, J. Phys. Chem. 84 (1980) 3480.

Google Scholar

[40] Y. Mishin, M.J. Mehl and D.A. Papaconstantopoulos, Phys. Rev. B65 (2002) 224114.

Google Scholar

[41] S.C. Deevi, P.J. Maziasz, V.K. Sikka, R.W. Cahn (Eds. ), Proceedings of the International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications, ASM International, Metals Park, OH, (1997).

DOI: 10.1080/10667857.1997.11752751

Google Scholar

[42] S.C. Deevi, D.G. Morris, V.K. Sikka (Eds. ), Mater. Sci. Eng. A 258 (1998) (special issue).

Google Scholar

[43] S. Reutzel, H. Hartmann, P.K. Galenko, S. Schneider, D.M. Herlach, Appl. Phys. Lett. 91 (2007) 041913.

Google Scholar

[44] Intermetallic Compounds: Structural Applications, Vol. 4, edited by J.H. Westbrook and R.L. Fleischer, Wiley, New York, (2000).

Google Scholar

[45] A. Kerrache, J. Horbach, K. Binder, Europhys. Lett. 81 (2008) 58001.

Google Scholar

[46] E.V. Levchenko, A.V. Evteev, I.V. Belova and G.E. Murch, Comput. Mater. Sci. 50 (2010) 331.

Google Scholar

[47] E.V. Levchenko, A.V. Evteev, D.R. Beck, I.V. Belova, G.E. Murch, Comput. Mater. Sci. 50 (2010) 465.

Google Scholar

[48] S. Stüber, D. Holland-Moritz, T. Unruh, A. Meyer, Phys. Rev. B 81 (2010) 024204.

Google Scholar

[49] V.B. Fiks, Sov. Phys. Solid State 5 (1964) 2549.

Google Scholar

[50] M. Gerl, J. Phys. Chem. Solids 28 (1967) 725.

Google Scholar

[51] E. Helfand, J. Chem. Phys. 33 (1960) 319.

Google Scholar

[52] R.E. Howard and A.B. Lidiard, J. Chem. Phys. 43 (1965) 4158.

Google Scholar

[53] B.D. Coleman, C. Truesdell, J. Chem. Phys. 33 (1960) 28.

Google Scholar

[54] C. Kittel, Introduction to Solid State Physics, Wiley, New York, (1971).

Google Scholar

[55] J.H. Irving and J.G. Kirkwood, J. Chem. Phys. 18 (1950) 817.

Google Scholar

[56] M. Daw and M.I. Baskes, Phys. Rev. B 29 (1984) 6443.

Google Scholar

[57] Y. Plevachuk, I. Egry, J. Brillo, D. Holland-Moritz, I. Kaban, Int. J. Mat. Res. 98 (2007) 107.

Google Scholar

[58] I. Egry, J. Brillo, D. Holland-Moritz, Y. Plevachuk, Mater. Sci. Eng. A 495 (2008) 14.

Google Scholar

[59] P. Nash, M.F. Singleton and J.L. Murray, Al-Ni (Aluminum-Nickel), in: P. Nash (Eds. ), Phase Diagrams of Binary Nickel Alloys, Vol. 1, ASM International, Metals Park, Ohio, 1991, pp.3-11.

Google Scholar

[60] A.V. Evteev, L. Momenzadeh, E.V. Levchenko, I.V. Belova, G.E. Murch, Philosophical Magazine 94 (2014) 731-751.

DOI: 10.1080/14786435.2013.861090

Google Scholar

[61] L. Verlet, Phys. Rev. 159 (1967) 98.

Google Scholar