Finite Element Analysis of Constitutive Behavior of FRP-Confined Steel Fiber Reinforced Concrete

Article Preview

Abstract:

This study presents the analysis of the constitutive behavior of fiber-reinforced polymer (FRP)-confined steel fiber reinforced concrete (SFRC) using a newly developed concrete damage-plasticity approach. Finite element (FE) analysis is conducted based on Lubliner’s model. The new concrete damage-plasticity approach accurately incorporates the effects of the steel fiber volume fraction and aspect ratio, confinement level, concrete strength, and nonlinear dilation behavior of confined concrete. New failure surface and flow rule were established using the experimental database. In order to validate the damage-plasticity model, the predictions from the FE analysis are compared with both experimental results and predictions of an accurate existing model for FRP-confined plain concrete. The analysis results indicate that the proposed approach accurately predicts the compressive behavior of FRP-confined SFRC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

511-516

Citation:

Online since:

June 2017

Export:

Price:

* - Corresponding Author

[1] X. Lu, C. T. Hsu, Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression. Cem. Concr. Res. 36 (2006) 1679-1685.

DOI: 10.1016/j.cemconres.2006.05.021

Google Scholar

[2] F. Bencardino, L. Rizzuti, G. Spadea, R. N. Swamy, Stress-strain behavior of steel fiber-reinforced concrete in compression. J. Mater. Civil Eng. 20(3) (2008) 255-263.

DOI: 10.1061/(asce)0899-1561(2008)20:3(255)

Google Scholar

[3] A. Noori, M. Shekarchi, M. Moradian, M. Moosavi, Behavior of steel fiber-reinforced cementitious mortar and high-performane concrete in triaxial loading. ACI Mater. J. 112(1) (2015) 95-104.

DOI: 10.14359/51686837

Google Scholar

[4] J. C. Lim, T. Ozbakkaloglu, Design model for FRP-confined normal- and high- strength concrete square and rectangular columns. Mag. Conc. Res. 66(20) (2014) 1020-1035.

DOI: 10.1680/macr.14.00059

Google Scholar

[5] J. C. Lim, T. Ozbakkaloglu, Influence of silica fume on stress-strain behavior of FRP-confined HSC. Constr. Build. Mater. 63 (2014) 11-24.

DOI: 10.1016/j.conbuildmat.2014.03.044

Google Scholar

[6] J. C. Lim, T. Ozbakkaloglu, Hoop Strains in FRP-Confined Concrete: Experimental Observations. Mater. Struct. 48(9) (2015) 2839-2854.

DOI: 10.1617/s11527-014-0358-8

Google Scholar

[7] T. Vincent, T. Ozbakkaloglu, Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect. Constr. Build. Mater. 75 (2015) 144-156.

DOI: 10.1016/j.conbuildmat.2014.10.038

Google Scholar

[8] T. Vincent, T. Ozbakkaloglu, Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: an experimental study. J. Comp. Constr. ASCE. (2015) 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029.

DOI: 10.1061/(asce)cc.1943-5614.0000489

Google Scholar

[9] T. Vincent, T. Ozbakkaloglu, Compressive Behavior of Prestressed High-Strength Concrete-Filled Aramid FRP Tube Columns: Experimental Observations. J. Comp. Constr. (2015) 10. 1061/(ASCE)CC. 1943-5614. 0000556, 04015003.

DOI: 10.1061/(asce)cc.1943-5614.0000556

Google Scholar

[10] J. C. Lim, T. Ozbakkaloglu, Influence of Concrete Age on Stress-Strain Behavior of FRP-Confined Normal- and High-Strength Concrete. Constr. Build. Mater. 82 (2015) 61-70.

DOI: 10.1016/j.conbuildmat.2015.02.020

Google Scholar

[11] T. Vincent, T. Ozbakkaloglu, Influence of overlap configuration on compressive behavior of CFRP-confined normal- and high-strength concrete. Mater. Struct. 49(4) (2016) 1245-1268.

DOI: 10.1617/s11527-015-0574-x

Google Scholar

[12] L. T. Chen, T. Ozbakkaloglu, Corner strengthening of square and rectangular concrete-filled FRP tubes. Eng. Struct. 117 (2016) 486-495.

DOI: 10.1016/j.engstruct.2016.03.031

Google Scholar

[13] M. T. Albitar, T. Ozbakkaloglu, B. A. Louk Fanggi, Behavior of FRP-HSC-Steel Double-Skin Tubular Columns under Cyclic Axial Compression. J. Comp. Constr. (2015) 10. 1061/(ASCE)CC. 1943-5614. 0000510, 04014041.

DOI: 10.1061/(asce)cc.1943-5614.0000510

Google Scholar

[14] T. Ozbakkaloglu, A novel FRP-dual grade concrete-steel composite column system. Thin-Wall. Struct. 96 (2015) 295-306.

DOI: 10.1016/j.tws.2015.08.016

Google Scholar

[15] T. Ozbakkaloglu, B. A. Louk Fanggi, FRP-HSC-steel composite columns: behavior under monotonic and cyclic axial compression. Mater. Struct. 48(4) (2015) 1075-1093.

DOI: 10.1617/s11527-013-0216-0

Google Scholar

[16] Y. Idris, T. Ozbakkaloglu,. Flexural Behavior of FRP-HSC-Steel Double Skin Tubular Beams under Reversed-Cyclic Loading. Thin-Wall. Struct. 87 (2015) 89-101.

DOI: 10.1016/j.tws.2014.11.003

Google Scholar

[17] Idris, Y. T. Ozbakkaloglu, Flexural behavior of FRP-HSC-steel composite beams. Thin-Wall. Struct. 80 (2014) 207-216.

DOI: 10.1016/j.tws.2014.03.011

Google Scholar

[18] B. A. Louk Fanggi, T. Ozbakkaloglu,. Behavior of hollow and concrete-filled FRP-HSC and FRP-HSC steel composite columns subjected to concentric compression. Adv. Struct. Eng. 18(5) (2015) 715-738.

DOI: 10.1260/1369-4332.18.5.715

Google Scholar

[19] B. A. Louk Fanggi, T. Ozbakkaloglu, Square FRP-HSC-Steel Composite Columns: Behavior under Axial Compression. Eng. Struct. 91 (2015) 156-171.

DOI: 10.1016/j.engstruct.2015.03.005

Google Scholar

[20] T. Ozbakkaloglu, B. A. Louk Fanggi, J. Zheng, Confinement model for concrete in circular and square FRP-concrete-steel double-skin composite columns. Mater. Des. 96 (2016) 458-469.

DOI: 10.1016/j.matdes.2016.02.027

Google Scholar

[21] Y. Idris, T. Ozbakkaloglu, Behavior of Square Fiber Reinforced Polymer-High-Strength Concrete-Steel Double-Skin Tubular Columns under Combined Axial Compression and Reversed-Cyclic Lateral Loading. Eng. Struct. 118 (2016) 307-319.

DOI: 10.1016/j.engstruct.2016.03.059

Google Scholar

[22] T. Xie, T. Ozbakkaloglu, Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression. Eng. Struct. 90 (2015) 158-171.

DOI: 10.1016/j.engstruct.2015.02.020

Google Scholar

[23] P. Zohrevand, A. Mirmiran, Stress-strain model of ultrahigh performance concrete confined by fiber-reinforced polymers. J. Mater. Civil Eng. 25(12) (2013) 1822-1829.

DOI: 10.1061/(asce)mt.1943-5533.0000769

Google Scholar

[24] C. Dundar, D. Erturkmen, S. Tokgoz, Studies on carbon fiber polymer confined slender plain and steel fiber reinforced concrete columns. Eng. Struct. 102 (2015) 31-39.

DOI: 10.1016/j.engstruct.2015.08.011

Google Scholar

[25] T. Yu, J. G. Teng, Y. L. Wong, S. L. Dong, Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model. Eng. Struct. 32(3) (2010) 665-679.

DOI: 10.1016/j.engstruct.2009.11.014

Google Scholar

[26] J. C. Lim, T. Ozbakkaloglu, A. Gholampour, T. Bennett, R. Sadeghi, Finite-element modeling of actively confined normal-strength and high strength concrete under uniaxial, biaxial, and triaxial compression. J. Struct. Eng. (2016).

DOI: 10.1061/(asce)st.1943-541x.0001589

Google Scholar

[27] T. Ozbakkaloglu, A. Gholampour, J. C. Lim, Damage-plasticity model for FRP-confined normal-strength and high-strength concrete. J. Comp. Constr. (2016) 10. 1061/(ASCE)CC. 1943-5614. 0000712, 04016053.

DOI: 10.1061/(asce)cc.1943-5614.0000712

Google Scholar

[28] J. C. Lim, T. Ozbakkaloglu, Lateral Strain-to-Axial Strain Relationship of Confined Concrete. J. Struct. Eng. (2015) 10. 1061/(ASCE)ST. 1943-541X. 0001094, 04014141.

DOI: 10.1061/(asce)st.1943-541x.0001094

Google Scholar

[29] J. C. Lim, T. Ozbakkaloglu, Investigation of the Influence of Application Path of Confining Pressure: Tests on Actively Confined and FRP-Confined Concretes. J. Struct. Eng. ASCE, (2015) 10. 1061/(ASCE)ST. 1943-541X. 0001177.

DOI: 10.1061/(asce)st.1943-541x.0001177

Google Scholar

[30] ABAQUS. ABAQUS Analysis User's Manual. version 6. 12, Dassault Systèmes Simulia Corp. Providence, RI, USA, (2012).

Google Scholar

[31] V. A. Lubarda, D. Kracjinvovic, S. Mastilovic, Damage model for brittle elastic solids with unequal tensile and compressive strength. Eng. Fract. Mech. 49 (1994) 681-697.

DOI: 10.1016/0013-7944(94)90033-7

Google Scholar

[32] J. Lubliner, J. Oliver, S. Oller, E. Onate, A plastic-damage model for concrete. International J. Solids Struct. 25(3) (1989) 299-326.

DOI: 10.1016/0020-7683(89)90050-4

Google Scholar

[33] J. Lee, G. L. Fenves, Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. 124(8) (1998) 892-900.

DOI: 10.1061/(asce)0733-9399(1998)124:8(892)

Google Scholar

[34] J. C. Lim, T. Ozbakkaloglu, Unified stress-strain model for FRP and actively confined normal-strength and high-strength concrete. J. Comp. Constr. 19(4) (2015) 04014072-1-14.

DOI: 10.1061/(asce)cc.1943-5614.0000536

Google Scholar