The Influence of Excess Nitrogen, on the Electrical Properties of the 4H-SiC/SiO2 Interface

Article Preview

Abstract:

The effect of nitrogen (N) introduced by ion implantation at the SiO2/4H-SiC interface on the capacitance of the MOS capacitors is investigated. The Thermal Dielectric Relaxation Current (TDRC) technique and Capacitance-Voltage (C-V) measurements performed at different temperatures and probe frequencies on an N implanted sample and on a virgin sample were employed for this purpose. There are three types of defects located at or near the interface, Dit, NIToxfast and NIToxslow that can be distinguished. Only Dit and NIToxfast respond to the a.c. small, high frequency signal at temperatures above 150K. The separation of Dit from the NIToxfast states have enabled us to study the influence of the excess of interfacial Nitrogen on each of the mentioned defects. It has been found that the N-implantation process fully suppresses the formation of NIToxfast and partially NIToxslow and Dit. Theoretical C-V characteristics were computed, based on the defect distributions determined by TDRC, and compared with the experimental ones showing a close agreement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 679-680)

Pages:

326-329

Citation:

Online since:

March 2011

Export:

Price:

[1] S. Dhar, S. R. Wang, J. R. Williams, S. T. Pantelides, L. C. Feldman.: MRS Bulletin Vol. 30, (2005) p.288.

Google Scholar

[2] G. V. Soares, I. J. R. Baumvol, L. Hold, F. Kong, J. Han, S. Dimitrijev, S., C. Radtke, CF. C. Stedile: Appl. Phys. Lett. Vol. 91 (2007) p.041906.

DOI: 10.1063/1.2763966

Google Scholar

[3] F. Moscatelli, A. Poggi, S. Solmi, R. Nipoti: IEEE Transactions on Electron Devices Vol. 55 (2008) p.961.

DOI: 10.1109/ted.2008.917107

Google Scholar

[4] A. Poggi F. Moscatelli, Y. Hijikata, S. Solmi, R. Nipoti: Microelectr. Eng. Vol. 84 (2007) p.2804.

Google Scholar

[5] H. Ö. Olafsson, E. O. Sveinbjornsson, T. E. Rudenko, V. I. Kilchytska, I. P. Tyagulski, I. N. Osiyuk : Mater. Sci. Forum 389–393, (2002), p.1001.

DOI: 10.4028/www.scientific.net/msf.389-393.1001

Google Scholar

[6] T. E. Rudenko, I. N. Osiyuk, I. P. Tyagulski, H. O. Olafsson, E. O. Sveinbjornsson: Solid-State Electronics Vol. 49 (2005) p.545.

Google Scholar

[7] I. Pintilie, C. M. Teodorescu, F. Moscatelli, R. Nipoti, A. Poggi, S. Solmi, L. S. Løvlie and B. G. Svensson:., J. Appl. Phys. Vol. 108, (2010) 024503.

DOI: 10.1063/1.3457906

Google Scholar

[8] J. S. Uranwala, J. G. Simmons and H. A. Mar, Appl. Phys. Lett. 26, (1975), p.697.

Google Scholar

[9] H. A. Mar and J. G. Simmons, Solid-State Electronics 17, (1974), p.131.

Google Scholar

[10] P. Deák, J.M. Knaup, T. Hornos, C. Thill, A. Gali and T. Frauenheim, J. Phys. D: Appl. Phys., 40, (2007), p.6242.

DOI: 10.1088/0022-3727/40/20/s09

Google Scholar